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1.1

1. Inkroduction

Welcome to Hands-On Quantum Machine Learning With Python. Thisbook
isyour comprehensive guide to get started with “Quantum Machine Learning”
—the use of quantum computing for computation of machine learning algo-
rithms.

Hands-On Quantum Machine Learning With Python strives to be the per-
fect balance between theory taught in a textbook and the actual hands-on
knowledge you’ll need to implement real-world solutions.

Inside this book, you will learn the basics of quantum computing and ma-
chine learning in a practical and applied manner. And you will learn to use
state-of-the-art quantum machine learning algorithms.

By the time you finish this book, you’ll be well equipped to apply quantum
machine learning to your projects. You will be in the pole position to become
a “Quantum Machine Learning Engineer” — the job to become the sexiest job of
the 2020s.

Who This BRoolk Is For

This book is for developers, programmers, students, and researchers who
have at least some programming experience and who want to become profi-
cient in quantum machine learning.

Don’t worry if you're just getting started with quantum computing and ma-
chine learning. We will begin with the very basics. We don’t assume prior
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knowledge of machine learning or quantum computing. You will not get left
behind.

If you are already experienced in machine learning or quantum computing,
the respective parts may be a repetition of concepts you're already familiar
with. However, this may make learning the respective new topic easier and
provide a slightly different angle to the known.

This book offers a practical, hands-on exploration of quantum machine
learning. Rather than working through tons of theory, we will build up prac-
tical intuition about the core concepts. We will acquire the exact knowledge
we need to solve practical examples with lots of code. Step by step, you will
extend your knowledge and learn how to solve new problems.

Of course, we will do some math. Of course, we will cover a little physics.
But I don’t expect you to hold a degree in any of these two fields. We will
go through all the concepts we need. While this includes some mathemati-
cal notation and formulae, we keep it at the minimum required to solve our
practical problems.

The theoretical foundation of quantum machine learning may appear over-
whelming at first sight. Be assured, when put into the right context and when
explained conceptually, it is not harder than learning a new programming
language. And this is what’s inside Hands-On Quantum Machine Learning
With Python.

Of course, we will write code. A lot of code, actually. If you know a little
Python, great! If you don’t know Python but another language, such as Java,
Javascript, or PHP, you’ll be fine, too. If you know programming concepts
(suchasif then else-constructsand loops) then learning the syntaxisa piece
of cake. If you're familiar with functional programming constructs, such as
map, filter, and reduce, you're already well equipped. If not, don’t worry, we
will get you started with these constructs, too. We don’t expect you to be a
senior software developer. We will go through all the code. Line by line.

By the time you finish the first few chapters of this book, you will be profi-
cient with doing the math, understanding the physics, and writing the code
you need to graduate to the more advanced content.

This book is not just for beginners. There is alot of advanced content in here,
too. Many chapters of Hands-On Quantum Machine Learning With Python
cover, explain, and apply quantum machine learning algorithms developed
in the last two years. The insights this book provides can be directly applied
in your job and research. The time you’ll save by reading through Hands-On
Quantum Machine Learning With Python will more than pay for itself.
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Book Organization

Machine learning and quantum computing rely on math, statistics, physics,
and computer science. This a lot of theory. Covering it all upfront would be
quite exhaustive and fill at least one book without any practical insight.

However, without at least some understanding of the underlying theoretical
concepts, the code examples on their own do not provide many practical in-
sights, either. While libraries free you from tedious implementation details,
the code, even though short, does not explain the core concepts.

This book provides the theory needed to understand the code we’re writing
to solve a problem. We cover the theory when it applies and when we need
the background to understand what we are doing. We will embed the theory
into solving a practical problem and thus, directly see it in action.

As aresult, the theory spreads among all the chapters. From simple to com-
plex. You may skip certain examples if you like. But you should have alook at
the theoretical concepts discussed in each chapter.

In this pre-release, we start with a Variational Hybrid Quantum-Classical
Algorithm to solve a binary classification task. First, we have a detailed look
at binary classification in chapter 2. Then, in chapter ??, we introduce the
basic concept of the quantum bit, the quantum state, and how measurement
affects it. Based on these concepts, we build our first Parameterized Quan-
tum Circuit and use it to solve our binary classification task. Such a hybrid
algorithm combines the quantum state preparation and measurement with
classical optimization.

Whv Should I Bother With Quantum
Machine Learning?

In the recent past, we have witnessed how algorithms learned to drive cars
and beat world champions in chess and Go. Machine learning is being ap-
plied to virtually every imaginable sector, from military to aerospace, from
agriculture to manufacturing, and from finance to healthcare.

But these algorithms become increasingly hard to train because they consist
of billions of parameters. Quantum computers promise to solve such prob-
lems intractable with current computing technologies. Their ability to com-
pute multiple states simultaneously enables them to perform an indefinite
number of superposed tasks in parallel. An ability that promises to improve
and to expedite machine learning techniques.



1.4

10 Chapter 1. Introduction

Unlike classical computers that are based on sequential information process-
ing, quantum computing makes use of the properties of quantum physics. Su-
perposition, entanglement, and interference. But rather than increasing the
available computing capacity, it reduces the capacity needed to solve a prob-
lem.

But quantum computing requires us to change the way we think about com-
puters. It requires a whole new set of algorithms. Algorithms that encode
and use quantum information. This includes machine learning algorithms.

And it requires a new set of developers. Developers who understand ma-
chine learning and quantum computing. Developers capable to solve practi-
cal problems that have not been solved before. A rare type of developer. The
ability to solve quantum machine learning problems today already sets you
apart from all the others.

Quantum machine learning promises to be disruptive. Although this merger
of machine learning and quantum computing, both areas of active research,
is largely in the conceptual domain, there are already a number of examples
where it is being applied to solve real-life problems. Google, Amazon, IBM,
Microsoft, and a whole fleet of high-tech startups strive to be the first to build
and sell quantum machine learning systems.

The opportunity to study a technology right at the moment when it is about
to prove its supremacy is a unique opportunity. Don’t miss it.

Quantum Machine Learning -
Be_jcw\ci The vae

If there were two terms in computer science that I would describe as overly
hyped and poorly understood, I would say machine learning and quantum com-
puting.

That said, Quantum Machine Learning is the use of quantum computing for
computation of machine learning algorithms. Could it be any worse?
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Figure 1.1: Which future will it be?

There are a lot of anecdotes on these two technologies. They start at ma-
chines that understand the natural language of us humans. And they end at
the advent of the Artificial General Intelligence that either manifests as the
Terminator-like apocalypse or the Wall-E-like utopia.

Don’t fall for the hype! An unbiased and detailed look at a technology helps
not to fall for the hype and the folklore. Let’s start with machine learning.

What is Machine Learning?

“Machine learning is a thing-labeler, essentially”
— Cassie Kozyrkov, Chief Decision Scientist at Google, source —

With machine learning, we aim to put a label onto a yet unlabeled thing. And
there are three main ways of doing it: classification, regression, and segmen-
tation.

In classification, we try to predict the discrete label of an instance. Given the
input and a set of possible labels, which one is it? Here’s a picture. Isit a cat
oradog?


https://www.linkedin.com/pulse/simplest-explanation-machine-learning-youll-ever-read-cassie-kozyrkov
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Figure 1.2: Is it a cat or a dog?

Regression is about finding a function to predict the relationship between
some input and the dependent continuous output value. Given you know the
income and the effective tax rates of your friends, can you estimate your tax
rate given your income even though you don’t know the actual calculation?

effective ktax rate

gross income

Figure 1.3: Effective tax rate by gross income

And segmentation is the process of partitioning the population into groups
with similar characteristics who are thus likely to exhibit similar behavior.
Given you produce an expensive product, such as yachts, and a population of
potential customers, who do you want to try to sell to?
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Figure 1.4: Customer Segmentation

142 What is Quantum Computing?

Quantum computing is a different form of computation. It uses three fun-
damental properties of quantum physics: superposition, interference, and
entanglement.

Superposition refers to the quantum phenomenon where a quantum system
can exist in multiple states concurrently.

Figure 1.5: The quantum superposition
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¢ Actually, the quantum system does not exist in multiple states

*  concurrently. It exists in a complex linear combination of a
state 0 and a state 1. It is a different kind of combination that is
neither "or” nor is it "and”. We will explore this state in depth
in this book.

Quantum interference is what allows us to bias quantum systems toward the
desired state. The idea is to create a pattern of interference where the paths
leading to wrong answers interfere destructively and cancel out but the paths
leading to the right answer reinforce each other.

Interfering waves

AR
R

resulting wave

Figure 1.6: Interference of waves

Entanglement is an extremely strong correlation between quantum parti-
cles. Entangled particles remain perfectly correlated even if separated by
great distances.
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Figure 1.7: Entanglement

Do you see the Terminator already? No?
Maybe Wall-E? No again?

Maybe it helps to look at how these things work.

1.4.3 How Does Machine Learning Work?

There are myriads of machine learning algorithms out there. But every one
of these algorithms has three components:

- The Representation depicts the inner architecture the algorithm uses
to represent the knowledge. It may consist of a set of rules, instances,
decision trees, support vector machines, neural networks, and others.

- The Evaluation is a function to evaluate candidate algorithm parame-
terizations. Examples include accuracy, prediction and recall, squared
error, posterior probability, cost, margin, entropy, and others.

- The Optimization describes the way of generating candidate algorithm
parameterizations. It is known as the search process. For instance,
combinatorial optimization, convex optimization, and constrained op-
timization.

The first step of machine learning is the development of the architecture, the
representation. The architecture specifies the parameters whose values hold
the representation of the knowledge. This step determines how suited the
solution will be to solve a certain problem. More parameters are not always
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better. If our problem can be solved by a linear function, trying to solve it
with a solution that consists of millions of parameters is likely to fail. On the
other hand, an architecture with very few parameters may be insufficient to
solve complex problems such as natural language understanding.

Re Presev&o&ioh

Measure
Evaluation

OPEimiza&ioh

Figure 1.%: A generalized notion of machine learning

Once we settled for the architecture to represent the knowledge, we train our
machine learning algorithm with examples. Depending on the number of pa-
rameters, we need a lot of examples. The algorithm tries to predict the label
of each example. We use the evaluation function to measure how the algo-
rithm performed.

Finally, the optimizer adjusts the representation parameters in a way that
promises better performance with regard to the measured evaluation. It may
even involve changing the architecture of the representation.

Learning does not happen in giant leaps. Rather in tiny steps. In order to
yield a good performance and depending on the complexity of the problem,
it takes several iterations of this general process until the machine is able to
put the correct label at a thing.

What Tasks Are Quanktum Cmmpu&ers
Crood AE?

The world of quantum mechanicsis different from the physics we experience
in our everyday situations. So is the world of quantum computing different
from classical (digital) computing.
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What makes quantum computing so powerful isn’t its processing speed. In
fact, it is rather slow. What makes quantum computing so powerful isn’t its
memory, either. In fact, it is absurdly tiny. We’re talking about a few quan-
tum bits.

What makes quantum computing so powerful is the algorithms it makes pos-
sible. These algorithms exhibit different complexity characteristics than
their classical equivalents.

In order to understand what that means, let’s have a brief look at complexity
theory. Complexity theory is the study of the computational effort required
torun an algorithm.

For instance, the computational effort of addition is ¢/(n). This means that
the effort of adding two numbers increases linearly with the size (digits) of
the number. The computational effort of multiplication is ¢(n?). The effort
increases by the square of the number size. These algorithms are said to be
solvable in polynomial time.

But these problems are comparably simple. The best algorithm solving the
problem of factorization, that is finding the prime factors of an »n-digit num-
ber,is ¢'(¢"'/3). It means that the effort increases exponentially with the num-
ber of digits.

o
=
S~
PR
bl
%
¥
—
D
3
0
J

Problem size g

Figure 1.9: Graphs of common complexity functions

The difference between ¢'(rn?) and ¢(¢"'/?) complexity must not be underesti-
mated. While your smartphone is able to multiply numbers with 800 digits
in a few seconds, the factorization of such numbers takes about 2,000 years
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on a supercomputer.

A savvy quantum algorithm (such as Shor’s algorithm) can use superposition
to evaluate all possible factors of a number simultaneously. And rather than
calculating the result, it uses interference to combine all possible answers
in a way that yields a correct answer. This algorithm solves a factorization
problem with & ((logn)?(loglogn)(logloglogn)) complexity. This is a polyno-
mial complexity! So is multiplication.

Quantum computing is powerful because it promises to solve certain types of
mathematical calculations with reduced complexity.

Do you see the Terminator or Wall-E now? Not yet?

The Case For Quantum Machine Learning

Quantum machine learning is the use of quantum computing for the compu-
tation of machine learning algorithms.

We have learned that machine learning algorithms contain three compo-
nents: representation, evaluation, and optimization.

When we look at the representation, current machine learning algorithms,
such as the Generative Pre-trained Transformer 3 (GPT-3) network, published
in 2020, come to mind. GPT-3 produces human-like text. It has 175 billion pa-
rameters. The IBM Q quantum computer has 27 quantum bits. Even though
quantum bits store a lot more information than a classical bit does (because
it is not either o or 1), quantum computers are far away from advancing ma-
chine learning for their representation ability.

During the evaluation, the machine learning algorithm tries to predict the
label of a thing. Classically, this involves measuring and transforming data
points. For instance, neural networks rely on matrix multiplications. These
are tasks classical computers are good at. However, if you have 175 billion pa-
rameters, then calculating the resulting prediction takes quite a lot of matrix
multiplications.

Finally, the algorithm needs to improve the parameters in a meaningful way.
The problem is to find a set of parameter values that result in better perfor-
mance. With 175 billions of parameters, the number of combinations is end-
less.

Classical machine learning employs heuristics that exploit the structure of
the problem to converge to a sufficient solution within a reasonable time. De-
spite the use of even advanced heuristics, training the GPT-3 would require
355 years to train on a single GPU (Graphics Processing Unit) and cost $4.6
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million. Just to get a feeling of what reasonable means in this context.

The main characteristic of quantum computing is the ability to compute mul-
tiple states concurrently. A quantum optimization algorithm can combine
all possible candidates and yield those that promise good results. Therefore,
quantum computing promises to be exponentially faster than classical com-
puters in the optimization of the algorithm.

But this does not mean we only look at the optimization. Because the opti-
mization buildsupon running an evaluation. And the evaluation buildsupon
the representation. Thus, tapping the full potential of quantum computing
to solve the machine learning optimization problem requires the evaluation
and the representation to integrate with the quantum optimizer.

Having in mind what classical machine learning algorithms can do today,
and if we expect quantum computing to reduce the complexity of training
such algorithms by magnitudes, then the hype becomes understandable. Be-
cause we are “only” magnitudes away from things like Artificial General In-
telligence.

But of course, building an Artificial General Intelligence requires more than
the computation. It needs data. And it needs the algorithms.

The development of such algorithmsis one of the current challenges in quan-
tum machine learning. But there’s another aspect to cope with in that chal-
lenge. That aspect is we are in the NISQ era.

Quantum Machine Learning In The
NISQ Era

Quantum computing is a different form of computation. A form that, as we
just learned, can change the complexity of solving problems making them
tractable. But this different form of computation brings its own challenges.

Digital computers need to distinguish between two states: 0 and 1. The cir-
cuits need to tell the difference between high voltage and low voltage. When-
ever there is a high voltage, it is 1 and if there is a lower voltage it is 0. This
discretization means that errors must be relatively large to be noticeable and
methods for detecting and correcting such errors can then be implemented.

Unlike digital computers, quantum computers need to be very precise. They
keep a continuous quantum state. And quantum algorithms that base on pre-
cise manipulations of continuously varying parameters. In quantum com-
puters, however, errors can be arbitrarily small and impossible to detect, but
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still, their effects can build up to ruin a computation.

This fragile quantum state is very vulnerable to the noise coming from the en-
vironment around the quantum bit. Noise can arise from control electronics,
heat, or impurities in the quantum computer’s material itself, and can also
cause serious computing errors that may be difficult to correct.

But to keep the promises quantum computers make, we need fault-tolerant
devices. We need devices to compute Shor’salgorithm for factoring. We need
devicestoexecuteall the otheralgorithmsthat have been developedin theory
that solve problems intractable for digital computers.

But such devices require millions of quantum bits. This overhead is re-
quired for error correction since most of these sophisticated algorithms are
extremely sensitive to noise.

Current quantum computers have up to 27 quantum bits. Even though IBM
strives for a 1000-quantum bits computer by 2023, the quantum processors
we expect in the near-term will have between 50 and 100 quantum bits. Even
if they exceed these numbers, they remain relatively small and noisy. These
computers can only execute short programs since the longer the program is
the more noise-related output errors will occur.

Nevertheless, programs that run on devices beyond 50 quantum bits become
extremely difficult to simulate on classical computers already. These devices
can do things infeasible for a classical computer.

And this is the era we’re about to enter. The era when we can build quan-
tum computers that, while not being fault-tolerant, can do things classical
computers can’t. The erais described by the term “Noisy Intermediate-Scale
Quantum” - NISQ.

Noisy because we don’t have enough qubits to spare forerror correction. And
“Intermediate-Scale” because of the number of quantum bits is too small to
compute sophisticated quantum algorithms, but large enough to show quan-
tum advantage or even supremacy.

The current era of NISQ-devices requires a different set of algorithms, tools,
and strategies.

For instance, Variational Quantum-Classical Algorithms have become a
popular way to think about quantum algorithms for near-term quantum de-
vices. In these algorithms, classical computers perform the overall machine
learning task on information they acquire from running certain hard-to-
compute calculations on a quantum computer.


https://quantum-journal.org/papers/q-2018-08-06-79/
https://quantum-journal.org/papers/q-2018-08-06-79/
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The quantum algorithm produces information based on a set of parameters
provided by the classical algorithm. Therefore, they are called Parameter-
ized Quantum Circuits (PQCs). They are relatively small, short-lived, and
thus suited for NISQ-devices.

I learned Quantum Machine
Learning The Hard Wa:j

I did not have the fortune to take a quantum computing class in college. Not
tospeakofaclassin quantum machinelearning. Atthe time, it wouldn’t have
been much fun either. In the early 2000s, quantum computing was just about
to take the step from a pure theory to be evaluated in research labs. It was a
field for theoretical physicists and mathematicians.

At the time, I haven’t even heard about it. Unfortunately. When I headed
about quantum computing for the first time, I think it was around 2008, re-
searchers had successfully entangled qubits and were able to control them.
Of course, Star Trek-like transportation came to mind when I heard two par-
ticles that were physically apart could share a state so that it was possible to
change the state of one particle by observing the other.

Yet, until around 2014, I did not pay much attention. I was too busy writ-
ing my doctoral dissertation about assessing the effort caused by the require-
ments in a software development project. When I returned to normal life, I
was just right in time to experience the end of the second AI winter and the
advent of practical machine learning. What had been theory thus far became
reality now.

When I got into machine learning, the field was already quite evolved. Li-
braries such as Scikit-Learn, later Keras, TensorFlow, and PyTorch made the
development of machine learning algorithms convenient. Even though my
favorite books were published sometime later, there were already a lot of
good books and learning material available.

My favorite books are: Hands-On Machine Learning with Scikit-
Learn and TensorFlow by Aurélien Géron released 2017 and
Deep Learning with Python by Francois Chollet released 2018.

L

But the models we’re developing today become increasingly hard to train.
Open AI’'s GPT-3 model that uses deep learning to produce human-like text
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would require 355 years on a single GPU and cost $4,600,000 to train. It is
hard to believe that the upcoming milestones can be reached classically. This
insight brought quantum computing back into my focus. Quantum comput-
ing promises to reduce the computational complexity of certain algorithms
by magnitudes. It promises to solve tasks in a few seconds classical comput-
ers would need thousands of years for. It promises to prevent us from the
next AI winter that would be caused by the inability to reach the next mile-
stones of machine learning.

Figure 1.10: The AI Winter

In 2018, I started to deep dive into quantum machine learning. Scientific pa-
persand a few theoretical books were allI could find. And these did not cover
quantum machine learning but quantum computing in general. I was happy
about every little piece.

After reading these quantum computing publications, I was left scratching
my head. Most of the papers are pretty heavy on math and assume you're
familiar with a lot of physical jargon. I could not even find an appropriate
starting point or some guidance on how to structure my learning efforts.

Frustrated with my failed attempts, I spent hours searching on Google. I
hunted for quantum tutorials, only to come up empty-handed.

I could clearly see the potential value of quantum computing for machine
learning. Yet, I couldn’t see how all these parts of quantum computing fit
together. Entry-level material was hard yo find. And practical guides were
simply not existent. I wanted to get started, but I had nothing to show for
my effort, except for a stack of quantum computing papers on my desk that I
hardly understood.

Finally, I resorted to learning the theory first. I heard about Qiskit, the IBM
quantum SDK for Python. At the time, its documentation was rather poor,
especially if you were not familiar with all the physical jargon and its under-
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lying theory. But it let me experience what some of these things like superpo-
sition, entanglement, and interference practice meant.

This practical knowledge enabled me to connect quantum computing with
the algorithms I knew from machine learning. I found my way to quantum
machine learning success through myriads of trial-and-error experiments,
countless late nights, and a lot of endurance. I really believe that painstak-
ingly working everything out in small pieces made an impact on how I under-
stand quantum machine learning. Though, I would recommend not taking
the same path.

My personal takeaways are:

+ Youdon’t need to cram all the theory before you start applying it

» You don’t need to work through tons of equations

« You don’t need to be a mathematician to master quantum machine
learning

« You don’t need to be a physicist to understand quantum machine learn-
ing

- You'll do great as a programmer, an engineer, a data scientist, or any
other profession.

- But quantum machine learning is taught the wrong way

When I started studying the quantum part of quantum machine learning, I
took a deep dive into the theory and into math. Because this is what most
quantum computing resources focus on.

Of course, it is desirable to have an understanding of the underlying math
and the theory. But more importantly, you need to have an understanding of
what the concepts mean in practice. If you know what you can do and how
you need to do it, you don’t need to think about how it (physically) works all
the time.

Don’t get me wrong. In quantum machine learning, their and math are im-
portant. But if you don’t use the theoretical knowledge and apply it to solve
real-world tasks, then you’ll have a hard time finding your space in the quan-
tum machine learning world. You need to become a quantum machine learn-
ing practitioner from the very beginning. In contrast to the days when I
started, today there are quite a few resources available. But most of them fall
into one of the following categories

- Theoretical papers with lots of equations prove some quantum speedup
of an algorithm. Yet, they don’t show any code.

« Textbooks on quantum computing in general explain the concepts in
an understandable manner. But they are short on showing how to use
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them for a purpose.

- Blog posts show you an actual algorithm in code. But they don’t relate
the code to any underlying concept. You see it works. But you don’t
learn anything about why and how it works.

By no means do I want to say these resources are not worth reading. But none
of these resources are useful to learn how to apply quantum machine learn-
ing. For someone just about to start with quantum machine learning, you
would need to invest a lot of time and effort for little to no practical return.

There is a fundamental disconnect between theory and practice. There’s a
gap I want to help to fill with Hands-On Quantum Machine Learning with
Python so you can learn in a more efficient-a better way.

This is the book I wish I had when I first started studying quantum machine
learning. Inside this book, you’ll find practical walkthroughs and hands-on
tutorials with lots of code. The book introduces new theory just in time you
need it to take the next step. You'll learn a lot of theory. But you're not left
alone with it. We directly apply our newly acquired knowledge to solve an
actual problem.

We will not only implement different quantum machine learning algo-
rithms, such as Quantum Naive Bayes, Quantum Bayesian Network, Varia-
tional Quantum Eigensolver, and Quantum Approximate Optimization Algo-
rithms. But we also use them to solve actual problems taken from Kaggle.

By the time you finish this book, you’ll know these algorithms, what they do,
why you need them, how they work, and most importantly how to use them.

Hands-On Quantum Machine Learning With Python strives to be the perfect
balance between theory taught in a textbook and the actual hands-on knowl-
edge you’ll need to implement real-world solutions.

Thisbookisyour comprehensive guide to get started with Quantum Machine
Learning”-the use of quantum computing for machine learning tasks.

Quantum Machine Learning Is
Taught The Wrong Wav

The literature on quantum computing is full of physical jargon and formulae.
Let’s take the Variational Quantum Eigensolver (VQE) for instance.

VQE can help us to estimate the energy of the ground state of a
given quantum mechanical system. Thisisthe upper bound ofthe
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lowest eigenvalue of a given Hamiltonian. It builds upon the vari-
ational principle that is described as: (¥A|H|¥A) >=E)

The first and natural reaction-if you don’t hold a degree in physics-is to put
the article away.

“Well, nice try. Maybe the whole topic is not for me”, you think. “Maybe,
quantum computing is beyond my reach”.

Don’t give up that fast. Most of the stuff in quantum computing was dis-
covered by physicists and mathematicians. Of course, they build upon the
knowledge of their peers when they share insights and teach their students.
It is reasonable they use the terms they are familiar with.

You wouldn’t use the vocabulary of a bartender to explain programming and
machine learning either, would you? But maybe, we should.

It is reasonable to assume a certain kind of knowledge when we talk or write
about something. But should we restrain students of other, nearby disci-
plines from learning the stuff? Why shouldn’t we support a computer scien-
tist or a software engineer in learning quantum computing?

I’ve got a clear opinion. I believe anyone sincerely interested in quantum
computing should be able to learn it. There should be resources out there
catering to the needs of the student, not to the convenience of the teacher. Of
course, this requires a teacher able to explain the complex stuff in allegedly
simple language.

If you can't explain it simply,
ou don't undersktand it '
well enough.

Figure 1.11: Albert Einstein

I wouldn’t dare to say I understood quantum computing well enough to ex-
plain it with the vocabulary bartenders use. But I'd give it a shot explaining
it to a computer scientist and a software engineer. I don’t see a reason to re-
strict this field to physicists, only.
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Of course, itis desirable to understand the underlying theory of quantum me-
chanics. Of course, it is desirable to be able to do the math. But, more impor-
tantly, you need to understand how to solve a certain problem.

In quantum computing, we use quantum superposition, entanglement, and
interference to solve tasks. These are astonishing and maybe counter-
intuitive phenomena. But no matter how weird they may appear, quantum
mechanical systems adhere to a certain set of physical laws. And these laws
make the systems behave in certain ways. How deep do you have to know the
physical laws? How much quantum math do you need?

I don’t believe anyone (including me) really understands how a classical com-
puter works. Yet, we all use them. We even program them! I learned how to
code a classical computer because my teachers explained it to me in a way I
was able to understand back then.

My high-school teacher explained the concepts of data types and algorithms
in an applied way. He taught me how they work and what they are good for.
Even though-or maybe because-we didn’t go through electro-mechanical cir-
cuits and information theory, I was able to learn to program.

“Maybe quantum computing is different,” you say? “Maybe, the stuffin there
is too complex to learn without a degree in physics!”

The theoretical foundation of quantum machine learning may appear over-
whelming at first sight. Beassured, when putinto the right context and when
explained conceptually, it is not harder than learning a new programming
language. And this is what’s inside Hands-On Quantum Machine Learning
With Python.

In my post “Quantum Programming-For Non-Mathematicians”, I showed
how to calculate the joint probability of two probabilities with Qiskit-the
quantum SDK of IBM. You don’t need to know all the theory to follow it. In
“Do You Struggle With The Quantum Superposition?”, I give a hands-on in-
troduction to quantum computing.

I truly believe developers, programmers, and students who have at least
some programming experience can become proficient in quantum machine
learning. Teaching QML the right way requires a different approach-a prac-
tical approach.

Rather than working through tons of theory, a good approach builds up prac-
tical intuition about the core concepts. I think it is best to acquire the exact
theoretical knowledge we need to solve practical examples.

Step by step, we need to extend our knowledge and learn how to solve new
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problems. Of course, we will need some math. Of course, we will need a little
physics. But we should not expect the student to hold a degree in any of these
two fields.

In a practical approach, we will write code. A lot of code, actually. Most ma-
chine learning and quantum computing libraries use Python. If you know
a little Python, great! If you don’t know Python but another language, such
as Java, Javascript, or PHP, you’'ll be fine, too. It is more important to know
programming concepts (such as if then else-constructs and loops) than it is
to know the syntax. Once you have some experience in how things work,
learning a different syntax is a piece of cake. The same is true for quantum
computing. Once you know how to work with qubits, it doesn’t really matter
whether you use Qiskit (the IBM SDK) or Cirq (the Google SDK).

Quantum machine learning relies on math, statistics, physics, and computer
science. This a lot of theory. Covering it all upfront would be quite ex-
haustive and fill at least one book without any practical insight. However,
without at least some understanding of the underlying theoretical concepts,
code examples on their own do not provide many practical insights, either.
While libraries free you from tedious implementation details, the code, even
though short, does not explain the core concepts.

An appropriate practical approach providesthe theory needed tounderstand
the code we write to solve a problem. We should cover the theory when it ap-
plies and when we need the background to understand what we are doing.
We should embed the theory into solving a practical problem and thus, di-
rectly see it in action.

This is the approach we follow in the book Hands-on Quantum Machine
Learning With Python.

Thisbookis your comprehensive guide to get started with Quantum Machine
Learning”-the use of quantum computing for machine learning tasks.

Hands-On Quantum Machine Learning With Python strives to be the perfect
balance between theory taught in a textbook and the actual hands-on knowl-
edge you’ll need to implement real-world solutions. Inside this book, you
will learn the basics of quantum computing and machine learning in a prac-
tical and applied manner. And you will learn to use state-of-the-art quantum
machine learning algorithms. By the time you finish this book, you’ll be well
equipped to apply quantum machine learning to your projects. You will be
in the pole position to become a “Quantum Machine Learning Engineer”-the
job to become the sexiest job of the 2020s.



1%

1.¥.1

1.%.2

28 Chapter 1. Introduction

Confiquring Your Quanktum
Machine Learning Workstation

Even though thisbookisabout quantum machinelearning, Idon’texpect you
to have a quantum computer at your disposal. Thus, we will run most of the
code examples in a simulated environment on your local machine. But we
will need to compile and install some dependencies first.

We will use the following software stack:

« Unix-based operating system (not required but recommended)
- Python, including pip
- Jupyter (not required but recommended)

‘Pj&h@&\

For all examples inside Hands-On Quantum Machine Learning With
Python, we use Python as our programming language. Python is easy to
learn. Its simple syntax allows you to concentrate on learning quantum
machine learning, rather than spending your time with the specificities of
the language.

Most importantly, machine learning tools, such as PyTorch and Tensorflow,
as well as quantum computing tools, such as Qiskit and Cirq, are available as
Python SDKs.

UquEer
Jupyter notebooks are a great way to run quantum machine learning exper-

iments. They are a de facto standard in the machine-learning and quantum
computing communities.

A notebook is a file format (.ipynb). The Jupyter Notebook app lets you edit
your file in the browser while running the Python code in interactive Python
kernels. The kernel keeps the state in memory until it is terminated or
restarted. This state contains the variables defined during the evaluation of
code.

A notebook allows you to break up long experiments into smaller pieces you
can execute independently. You don’t need to rerun all the code every time
you make a change. But you can interact with it.


https://jupyter.org
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Libraries and Packages

We will use the following libraries and packages:

- Scikit-learn
 PyTorch or Tensorflow
+ Qiskit or Cirq

Scikit-learn is the most useful library for machine learning in Python. It con-
tains a range of supervised and unsupervised learning algorithms. Scikit-
learn builds upon a range of other very useful libraries, such as:

« NumPy: Work with n-dimensional arrays

SciPy: Fundamental library for scientific computing
Matplotlib: Comprehensive 2D/3D plotting
IPython: Enhanced interactive console

Sympy: Symbolic mathematics

Pandas: Data structures and analysis

PyTorch and Tensorflow are the major librarieswhen it comes to deep neural
networks. Qiskit is IBM’s quantum computing SDK and Cirq is Google’s.

Virkual Environmenk

Like most programming languages, Python has its own package installer.
This is pip. It installs packages from the Python Package Index (PyPI) and
other indexes.

By default, it installs the packages in the same base directory that is shared
among all your Python projects. It makes an installed package available to
all your projects. This seems to be good because you don’t need to install the
same packages over and over again.

However, if any two of your projects require different versions of a package,
you’ll be in trouble. Because there is no differentiation between versions.
You would need to uninstall one version and install another whenever you
switch working on either one of the projects.

Thisiswhere virtual environments come into play. Their purposeisto create
an isolated environment for each of your Python projects. It’s no surprise,
using Python virtual environments is the best practice.
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Configuring Ubuntu For Quanbtum
Machine Learning with Python

In this section, we go through the installation on Ubuntu Linux. An Ubuntu
Linux environment is highly recommended when working with quantum
machine learning and Python because all the tools you need can be installed
and configured easily.

Other Linux distributions (such as Debian) or MacOS (that also builds upon
Unix) are also ok. But there are a few more aspects to consider.

All the code should work on Windows, too. However, the configuration of a
Windows working environment can be a challenge on its own. Fortunately,
there is a way out. So, if you have a Windows operating system, have a look
at the next section ?? before you continue with the following instructions.

We accomplish all steps by using the Linux terminal. To start, open up your
command line and update the apt—get package manager.

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get install -y build-essential wget python3-dev \
libreadline-gplv2-dev libncurseswb-dev libssl-dev \
libsqlite3-dev tk-dev libgdbm-dev 1libc6-dev 1libbz2-dev \
libffi-dev

The next step downloads and installs Python 3.8.5 (the latest stable release at
the time of writing).

$ mkdir /tmp/Python38

$ cd /tmp/Python38

$ wget https://www.python.org/ftp/python/3.8.5/Python-3.8.5.tar.xz
$ tar xvf Python-3.8.5.tar.xz

$ cd /tmp/Python38/Python-3.8.5

$ ./configure

$ sudo make altinstall

If you want to have this Python version as the default, run
$ sudo 1n -s /usr/local/bin/python3.8 /usr/bin/python

Python is ready to work. Let’s now install and update the Python package
manager pip:

$ wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py
$ pip install --upgrade pip
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You might restart your machine to recognize pip as a command.

As mentioned, we install all the Python packages in a virtual environment.
So, we need to install virtualenv:

$ sudo apt-get install python3-venv

To create a virtual environment, go to your project directory and run venv.
The following parameter (here env) specifies the name of your environment

$ python -m venv env

You’ll need to activate your environment before you can start installing or
using packages.

$ source env/bin/activate

When you’re done working on this project, you can leave your virtual envi-
ronment by running the command deactivate. If you want to reenter, simply
call source env/bin/activate again.

We’re now ready to install the packages we need.
Install Jupyter:

$ pip install jupyter notebook jupyterlab --upgrade
Install PyTorch:

$ pip install torch

Install TensorFlow

$ pip install tensorflow

Install Qiskit

$ pip install giskit

If you don’t install Qiskit in the virtual environment, you should add the ——
user flag. Otherwise, the installation might fail due to missing permissions.

Install Cirq
$ pip install cirq

Install further dependencies required of Qiskit and Scikit-Learn. If youdon’t
use a virtual environment, use the ——user flag here, too.

$ pip install numpy scipy matplotlib ipython pandas sympy nose seaborn


https://jupyter.org/install
https://pytorch.org/get-started/locally/
https://www.tensorflow.org/install/pip
https://qiskit.org/documentation/install.html#install
https://cirq.readthedocs.io/en/stable/install.html
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Install Scikit-Learn, with the ——user flag if you're not using a virtual environ-
ment.

$ pip install scikit-learn

Install drawing libraries:

$ pip install pylatexenc ipywidgets

You're now ready to start. Open up JupyterLab with

$ jupyter lab

How To Se&up 3u,p§j&erLab For Quankum
CompuELMg — O Windows

If you're a Python developer, there’s no way around a Unix-based operating
system. Python isalanguage to write software that’s usually supposed to run
at a server. And most servers run some kind of Linux.

Figure 1.12: Windows, Jupyter, Qiskit

Consequently, the default configuration in Python caters to the specificities
of a Unix-based system. While Python works on Windows, too, it requires a
lot more attention to get all the configuration details right. Starting from the
path separator that is not a slash but a backslash (\) to the different charset
(windows—1252), to different commands (e.g. del /s /qinstead of rm), Windows
differs in quite a few aspects.

While Linux is great for developing, you may prefer Windows in other situa-
tions. Maybe you don’t even have a choice. Your working computer simply
runs Windows. Full stop.

Fortunately, there’s a solution - at least if you're running Windows 10. Win-
dows 10 contains WSL2, the Windows Subsystem for Linux. It lets you run a


https://scikit-learn.org/stable/install.html
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full Ubuntu Linux inside Windows. Windows 10 must be updated to version
2004 and Intel’s virtualization technology must be enabled in BIOS settings.

In the first step, we need to activate the Windows Subsystem for Linux op-
tional feature. Open PowerShell as Administrator and run the following
command:

dism.exe /online /enable—feature /featurename:Microsoft—Windows—
Subsystem—Linux /all /norestart

In the next step, we update the subsystem to WSL2. Download the latest ker-
nel update for your system from https://aka.ms/ws12kernel and install the MSI
package.

Now, we enable the Virtual machine platform and set WSL2 as the default
version.

dism.exe /online /enable—feature /featurename:
VirtualMachinePlatform /all /norestart
wsl —set—default—version 2

Finally, we can install a Linux distribution as if it was a normal program.
Open the Microsoft store, search for “Ubuntu 20.04 LTS”, and install the pro-
gram. Once the installation finishes, you can start Ubuntu from your start
menu. On the first start, you need to create a new Unix user and specify a
password.

You can proceed with the installation of the libraries and packages as de-
scribed in the previous section 1.8.5.
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Predicting Survival On The Titanic

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15,1912, the Titanic sank after colliding with an iceberg. Being con-
sidered unsinkable, there weren’t enough lifeboats for everyone on board.
1502 out of 2224 passengers and crew members died that night.

Of course, the 722 survivors must have had some luck. But it seems as if cer-
tain groups of people had better chances to survive than others.

Therefore, the sinking of the Titanic has also become a famous starting point
for anyone interested in machine learning.

If you have some experience with machine learning, you’ll probably know
the legendary Titanic ML competition provided by Kaggle.

Ifyoudon’t know Kaggle yet, Kaggleisamong the world’slargest data science
communities. It offers many interesting datasets and therefore, it is a good
place to get started.

The problem to be solved is simple. Use machine learning to create a model
that, given the passenger data, predicts which passengers survived the Ti-
tanic shipwreck.



R.R

2.2 Get the Dataset 35

Grelb Ehe Dabaseb

In order to get the dataset, you'll need to create a Kaggle account (it’s free)
and join the competition. Even though Kaggle is all about competitions, you
don’t need to take part in them actively by uploading your solution.

Figure 2.1: The Titanic Shipwreck

When you join a competition, you need to accept and abide by the rules that
govern how many submissions you can make per day, the maximum team
size, and other competition-specific details.

You’'ll find the competition data in the Data tab at the top of the competition
page. Then, scroll down to find the list of files.

There are three filesin the data:

* train.csv
* test.csv
* gender_submission.csv

The file train.csv contains the data of a subset of the Titanic’s passengers.
This file is supposed to serve your algorithm as basis to learn whether a pas-
senger survived or not.

The file test.csv contains the data of another subset of passengers. It serves
to determine how good your algorithm performs.


https://www.kaggle.com/c/titanic/data
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The gender_submission.csv file is an example that shows how you should struc-
ture your predictions if you plan to submit them to Kaggle. Since we’re here
to start learning and not yet be ready to compete, we’ll skip this file.

Download the files train.csv and test.csv.

Loolke ok the daka

The first thing we need to do is to load the data. We use Pandas for that. Itis
renowned in the machine learning community for data processing. It offers
a variety of useful functions, such as a function to load .csv-files: read_csv.

Listing 2.1: Load the data from the csv-files

k8 import pandas as pd

2

k] train = pd.read_csv('./data/train.csv')
Y test = pd.read_csv('./data/test.csv')

We loaded our data into train and test. These are Pandas DataFrames.

A DataFrame keeps the data in a two-dimensional structure with labels. Such
as a database table or a spreadsheet. It provides a lot of useful attributes and
functions out of the box.

For instance, the DataFrame’s attribute shape provides a tuple of two integers
that denote the number of rows and the number of columns.

Let’s have a look:
Listing 2.2: The shapes of the Titanic datasets

W8 print('train has {} rows and {3} columns'.format(*train.shape))
P print('test has {3} rows and {} columns'.format(*test.shape))

train has 891 rows and 12 columns
test has 418 rows and 11 columns

We can see we have 891 training and 418 testing entries. More interestingly,
the train dataset has one more column than the test dataset.
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The pataFrame’s info() method shows some more detailed information. Have
a look at the train dataset.

Listing 2.3: The structure of the train dataset

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4  Sex 891 non-null object
5 Age 714 non-null float64
6  SibSp 891 non-null int64
7  Parch 891 non-null int64
8  Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

The info method returns a list of the columns: their index, their names, how
many entries have actual values (are not null), and the type of values.

Let’s have a look at the test dataset, too.

Listing 2.4: The structure of the test dataset

test.info()
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<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
# Column Non-Null Count Dtype
0 PassengerId 418 non-null int64
1 Pclass 418 non-null int64
2  Name 418 non-null object
3 Sex 418 non-null object
4  Age 332 non-null float64
5 SibSp 418 non-null int64
6 Parch 418 non-null int64
7  Ticket 418 non-null object
8 Fare 417 non-null float64
9 Cabin 91 non-null object
10 Embarked 418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB

When comparing both info, we can see the test dataset misses the column
Survived that indicates whether a passenger survived or died.

As Kaggle notes, they use the test dataset to evaluate the submissions. If they
provided the correct answer, it wouldn’t be much of a competition anymore,
would it? It is our task to predict the correct label.

Since we do not plan to submit our predictions to Kaggle to get an evaluation
of how our algorithm performed, the test dataset is quite useless for us.

So, we concentrate on the train dataset.

The info outputis quite abstract. Wouldn’tit be good to see some actual data?
No problem. That’s what the head-method is for.

The head method shows the column heads and the first five rows. With this
impression, let’s go through the columns. You can read an explanation on
the Kaggle page, too.

Listing 2.5: Look at the data

train.head()
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Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

1 A/521171 7.2500 NaN
PC17599 71.2833 C85

STON/02. 3101282  7.9250 NaN
113803 53.1000 C123
373450 8.0500 NaN

3 Braund, Mr. Owen Harris male 22.0
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
3 Heikkinen, Miss. Laina female 26.0
1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
3 Allen, Mr. William Henry male 35.0

W N — o
O~ O~
ococooo
nunn®nl -

2 1
3 1
4 1
5 0

Each column represents one feature of our data. The PassengerId is a consec-
utive number identifying each row. Survived is the indicator on whether the
passenger survived (0 = No, 1 = Yes). Pclass is the ticket class (1 = 1st, 2 = 2nd, 3
= 3rd). Then we have self-explanatory Name, Sex, and Age.

SibSp denotes the number of this passenger’s siblings or spouses aboard the
Titanic. Parch denotes the number of this passenger’s parents or children
aboard the Titanic.

Then, there are the Fare the passenger paid, the cabin number and the port of
embarkation (embarked) (C = Cherbourg, Q = Queenstown, S = Southampton).

Daka ‘F’repara&iam and Cleaning

Our data has different types. There is numerical data, such as the Age, SibSp,
Parch, and the Fare. There is categorial data. Some of the categories are rep-
resented by numbers (Survived, Pclass). Some are represented by text (Sex and
Embarked). And there is textual data (Name, Ticket, and Cabin).

This is quite a mess. For a computer. Furthermore, when having another
look at the result of train. info(), you can see that the counts vary for different
columns. While we have 891 values for most columns, we only have 714 for Age,
204 for cabin, and 889 for Embarked.

Before we can feed our data into any machine learning algorithm, we need to
clean up.

Missing Values

Most machine learning algorithms don’t work well with missing values.
There are three options of how we can fix this:

+ Get rid of the corresponding rows (removing the passengers from con-
sideration)
« Get rid of the whole column (remove the whole feature for all passen-

gers)
- Fill the missing values (for example with zero, the mean, or the median)



40 Chapter 2. Binary Classification

Listing 2.6: Cope with missing values

# option 1
# We only have two passengers without it. This is bearable
train = train.dropna(subset=["Embarked"])

# option 2
# We only have very few information about the cabin, let's drop it
train = train.drop("Cabin", axis=1)

1
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# option 3

# The age misses quite a few times. But intuition

# says it might be important for someone's chance to survive.
mean = train["Age"].mean()

train["Age"] = train["Age"].fillna(mean)

train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):
# Column Non-Null Count Dtype
0 PassengerId 889 non-null int64
1 Survived 889 non-null int64
2 Pclass 889 non-null int64
3  Name 889 non-null object
4  Sex 889 non-null object
5 Age 889 non-null float64
6  SibSp 889 non-null int64
7  Parch 889 non-null int64
8 Ticket 889 non-null object
9 Fare 889 non-null float64
10 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(4)
memory usage: 83.3+ KB

We can accomplish these things easily using DataFrame’s dropna(), drop(), and
fillna() methods. Thereisnoone best option in general. But you should care-
fully consider the specific context.

There are only two passengers whose port of embarkation we don’t know.
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These account for less than 1% of our data. If we completely disregard these
two passengers, we won’t see completely different results. Thus, we drop
these rows (line 3) with the dropna-method.

The dropna-method takes the column ("Embarked") as named parameter subset.
This parameter specifies the columns that determine whether to remove the
row (passenger). If at least one value of these columns is missing, the row gets
removed.

The situation is different with regard to the cabin. We only have this infor-
mation for 204 out of 991 passengers. It is questionable if this is enough to
draw any information from. We don’t know why these values miss. Even if
we found the cabinto be highly correlated with the survival of a passenger, we
wouldn’t know whether this correlation can be generalized to all passengers
or whether there is a selection bias meaning that the fact that we know the
Cabin depends on some other aspect.

We drop the whole column with the method drop. We provide the column
(cabin) we want to remove as positioned argument. The value 1 we provide as
named argument axis specifies that we want to remove the whole column.

Next, we know the Age of 714 passengers. Removing all the passengers from
consideration whose Age we don’t know doesn’t seem to be an option because
they account for about 22% of our data, quite a significant portion. Removing
the whole column doesn’t seem to be a good option either. First, we know
the Age of most of the passengers and intuition suggest that the Age might be
important for someone’s chance to survive.

We fill the missing values with the fillna method (line 13). Since we want to
fill only the missing values in the Age column, we call this function on this
column and not the whole DataFrame. We provide as argument the value we
want to set. This is the mean age of all passengers we calculated before (line
12).

Great. We now have 889 rows, 10 columns, and no missing data anymore.

Identifiers

The goal of machine learning is to create an algorithm that is able to predict
data. Or, as we said before: to put a label on a thing. While we use already la-
beled data when building our algorithm, the goal is to predict labels we don’t
know yet.

Wedon’ttell ouralgorithm how it can decide which label to select. Rather, we
tell the algorithm, “here is the data, figure it out yourself”. That being said,



42 Chapter 2. Binary Classification

a savvy algorithm may be able to memorize all the data you provide it with.
This is referred to as overfitting. The result is an algorithm performing well
on known data, but poorly on unknown data.

If our goal was to only predict labels we know already, the best thing we could
do is to memorize all passengers and whether they survived. But if we want
to create an algorithm that performs well even on unknown data, we need to
prevent memorization.

We have not even started building our algorithm. Yet, the bare features we
provide our algorithm with affect whether the algorithm will be able to mem-
orize data. Because we have potential identifiers in our data.

When looking at the first five entries of the dataset, three columns appear sus-
picious: the Passengerld, the Name, and the Ticket.

The Passengerld is a subsequent number. There should be no connection be-
tween how big the number is and whether a passenger survived.

Neither should the name of a passenger or the number on a ticket be a deci-
sive factor for survival. Rather, these are data identifying single passengers.
Let’s validate this assumption.

Let’s have alook at how many unique values are in these columns.

Listing 2.7: Unique values in columns

W8 print('There are {} different (unique) PassengerIds in the data'.format(
train["PassengerId"].nunique()))

Pd print('There are {} different (unique) names in the data'.format(train["
Name"1.nunique()))

k22 print('There are {3} different (unique) ticket numbers in the data'.format
(train["Ticket"].nunique()))

There are 889 different (unique) PassengerIds in the data
There are 889 different (unique) names in the data
There are 680 different (unique) ticket numbers in the data

Name and PassengerId are perfect identifiers. Each of the 889 rowsin our dataset
has a unique value.

And there are 680 different Ticket numbers. A possible explanation for the
Ticket not to be a perfect identifier may be family tickets. Yet, a prediction
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based on this data appears to support memorization rather than learning
transferable insights.

We remove these columns.

Listing 2.8: Remove identifying data

train.drop("PassengerId", axis=1)
train.drop("Name", axis=1)
train.drop("Ticket", axis=1)

.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 8 columns):

# Column Non-Null Count Dtype

0 Survived 889 non-null int64
1 Pclass 889 non-null int64
2  Sex 889 non-null object
3 Age 889 non-null float64
4 SibSp 889 non-null int64
5 Parch 889 non-null int64
6 Fare 889 non-null float64

7  Embarked 889 non-null object
dtypes: float64(2), int64(4), object(2)
memory usage: 62.5+ KB

Handling Text and Categorical Atkributes

Aswewill see throughout thisbook, all the algorithms, both classicand quan-
tum algorithms, work with numbers. Nothing but numbers. If we want to
use textual data, we need to translate it into numbers.

Scikit-Learn provides a transformer for this task called LabelEncoder.
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Listing 2.9: Transforming textual data into numbers

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

1

2

3

ey for col in ['Sex', 'Embarked']:
] le.fit(train[coll)
&
7
¥

train[col] = le.transform(train[coll])

train.head()

Survived Pclass Sex Age SibSp Parch Fare Embarked

0 0 3 1 22.0 1 0 7.2500 2
1 1 1 0 38.0 1 0 71.2833 0
2 1 3 0 26.0 0 0 7.9250 2
3 1 1 0 35.0 1 0 53.1000 2
4 0 3 1 35.0 0 0 8.0500 2

First, we import the LabelEncoder (line 1) and initialize an instance (line 2). We
loop through the columns with textual data (Sex and Embarked) (line 4). For
each column, we need to fit the encoder to the data in the column (line 5)
before we can transform the values (line 6).

Finally, let’s have another look at our DataFrame. You can see that both, sex and
Embarked are now numbers (int64). In our case, e denotes male and 1 denotes fe-
male passengers. But when you run the transformation again you may yield
different assignments.

Feature Scaling

Machine learning algorithms only work with numbers. Moreover, they usu-
ally work with numbers with identical scales. If numbers have different
scales, the algorithm may consider those with higher scales to be more im-
portant.

Even though all our data is numerical, it is not yet uniformly scaled. The val-
ues of most of the columns range between 0 and 3. But Age and Fare have far
bigger scales.

The max method returns the maximum value in a column. As we can see, the
oldest passenger was 80 years old and the highest fare was about 512.
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Listing 2.10: The maximum values

W8 print('The maximum age is {}'.format(train["Age"].max()))
P4 print('The maximum fare is {}'.format(train["Fare"].max()))

The maximum age is 80.0
The maximum fare is 512.3292

A common way to cope with data of different scales is min-max-scaling (also
known as normalization). This process shifts and rescales values so that they
end up ranging from e to 1. It subtracts the minimum value from each value
and divides it by the maximum minus the minimum value.

Scikit—Learn provides the MinMaxScaler transformer to do this for us.

Listing 2.11: Normalization of the data.

k8 from sklearn.preprocessing import MinMaxScaler

2

] scaler = MinMaxScaler()

¥4 scaler.fit(train)

] train = scaler.transform(train)

&

VA print('The minimum value is {3} and the maximum value is {}'.format(train.
min(), train.max()))

The minimum value is 0.0 and the maximum value is 1.0

Again, we first import the transformer (line 1) and initialize it (line 3). Then,
we fit the transformer to our data (line 4) and transform it (line 5).

Asaresult, all the data in our dataset range between 0.0 and 1.e.

§ The scaler returns a Numpy-array rather than a Pandas
*  DataFrame.
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Training and Testing

We already mentioned the goal of building an algorithm that does not only
perform well on data it already knows but one that also predicts the labels of
yet unknown data.

That’s why it is important to separate the data into a training and a testing
set. We use the training set to build our algorithm. And we use the testing set
to validate its performance.

Even though Kaggle provides a testing set, we skipped it for not including the
Survived column. We would need to ask Kaggle every time we wanted to vali-
dateit. To keep things simple and be able to do the validation on our own, we
rather spare some rows from the Kaggle training set for testing.

Separating a test set is quite simple. Scikit-learn provides a useful method for
that, too. Thisis train_test_split.

Further, we need to separate the input data from the resulting label we want
to predict.

Listing 2.12: Separating input from labels and training from testing sets

from sklearn.model_selection import train_test_split

input = train[:, 1:8]
labels = train[:, 0]

cnPunrpe

train_input, test_input, train_labels, test_labels = train_test_split(
input, labels, test_size = 0.2)

X ~§

print('We have {} training and {} testing rows'.format(train_input.shape
[0], test_input.shape[0]))
¥ print('There are {3} input columns'.format(train_input.shape[1]))

We have 711 training and 178 testing rows
There are 7 input columns

We separate the input columns from the labels with Python array indices
(lines 3-4). The first column (position @) contains the Survived flag we want
to predict. The other columns contain the data we use as input.

train_test_split separates the training from the testing data set. The param-
eter test_size = 0.2 (= 20%) specifies the portion we want the testing set to



R.8&

2.5 Baseline 47

have.

We can see our training data set consists of 711 entries. Accordingly, our test-
ing set consists of 178 entries. We have input 7 columns and a single column
output.

Let’s save our prepared data so that we can use it in the future without need-
ing to repeat all these steps.

Listing 2.13: Save the data to the filesystem

¥ import numpy as np

2

1 with open('data/train.npy', 'wb') as f:
¥ np.save(f, train_input)

] np.save(f, train_labels)

yd with open('data/test.npy', 'wb') as f:
:id np.save(f, test_input)
¥l np.save(f, test_labels)

Baseline

Now, we have our input data and the resulting labels. And we have it sepa-
rated into a training and a testing set. The only thing left is our algorithm.

Ouralgorithm should predict whether a passenger survived the Titanic ship-
wreck. This is a classification task since there are distinct outcome values.
Specifically, itis a binary classification task because there are exactly two pos-
sible predictions (survived or died).

Before we develop a quantum machine learning algorithm, let’s implement
the simplest algorithm we can imagine. A classifier that guesses.

Listing 2.14: A random classifier

B import random

P4 random. seed(a=None, version=2)
3

4 def classify(passenger):

] return random.randint(o, 1)

We import the random number generator (line 1) and initialize it (line 2).
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Our classifier is a function that takes passenger data as input and returns ei-
ther e or 1 as output. Similar to our data, @ indicates the passenger died and 1
the passenger survived.

In order to use the classifier, we write a Python function that runs our classi-
fier for each item in the training set.

Listing 2.15: The classification runner

(¥ def run(f_classify, x):
P4 return list(map(f_classify, x))

This function takes the classifier-function as the first argument (we can re-
place the classifier later) and the input data (as x) as the second parameter
(line1).

It uses Python’s map function to call the classifier with each item in x and re-
turn an array of the results.

Let’s run it.
Listing 2.16: Run the classifier

result = run(classify, train_input)

(0, 1, 0, ... 0, 1, 1]

When we run the classifier with our train_input we receive a list of predic-
tions.

Since our goal is to predict the actual result correctly, we need to evaluate
whether the prediction matches the actual result.

Let’s have a look at the accuracy of our predictions.
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Listing 2.17: Evaluate the classifier

def evaluate(predictions, actual):
correct = list(filter(

lambda item: item[0] == item[1],

list(zip(predictions,actual))

return '{} correct predictions out of {}. Accuracy {:.0f} %' \
.format(len(correct), len(actual), 100xlen(correct)/len(actual))

1
R
3
4
= ))
&
7
¥
2

print(evaluate(run(classify, train_input), train_labels))

378 correct predictions out of 711. Accuracy 53 %

Wedefine another function evaluate. It takesthe predictionsof ouralgorithm
and the actual results as parameters (line 1).

Theterm list(zip(predictions,actual)) (line 4) creates alist of 2-item lists. The
2-item lists are pairs of a prediction and the corresponding actual result.

We filter these items from the list where the prediction matches the actual
result (lambda item: item[@] == item[1]) (line 3). These are the correct predic-
tions. The length of the list of correct predictions divided by the total num-
ber of passengers is our Accuracy.

Great! We are already correct in half of the cases (more or less). Thisisnota
surprise when guessing one out of two possible labels.

But maybe we can do even better? I mean without any effort. We know that
more people died than survived. What if we always predicted the death of a
passenger?

Listing 2.18: Always predict a passenger died

WY def predict_death(item):

Pl return 0

3

¥4 print(evaluate(run(predict_death, train_input), train_labels))

442 correct predictions out of 711. Accuracy 62 %
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We’re up to an accuracy of 61% of our predictions. Not too bad, is it? This
value, that is the ratio between the two possible actual values is the preva-
lence.

Let’s consider a different task for a moment. Let’s say you're a doctor and
your task is to predict whether a patient has cancer. Only 1% of your patients
actually have cancer. If you predicted no-cancer all the time, your accuracy
would be astonishing 99%! But you would falsely diagnose the patients that
actually have cancer. And for the resulting lack of treatment, they’re going
to die.

Maybe the accuracy of the predictions aloneis not a good measure to evaluate
the performance of our algorithm.

Classifier Evaluakion and Measures

As we mentioned in section 1.4.3, the evaluation is one main part of every
machine learning algorithm. It may seem trivial at first sight. Yet, deciding
on the right measure is a very important step. When you optimize your al-
gorithm towards better performance, you will inevitably optimize towards
better scores in your evaluation function.

We will get to know more sophisticated evaluation functionsin thisbook. But
right now, we keep it simple. A better way to evaluate the performance of a
classifier is to look at the confusion matrix.

The general idea is to compare the predictions with the actual values. In bi-
nary classification, there are two possible actual values: true or false. And
there are two possible predictions: true or false.

There are four possibilities:

- True Negatives (TN): a passenger who died was correctly predicted

- False Positives (FP): a passenger who died was wrongly predicted to sur-
vive

- False Negatives (FN): a passenger who survived was wrongly predicted
todie

+ True Positive (TP): a passenger who survived was correctly predicted

Let’s have alook at the confusion matrix of the predict death classifier.
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Listing 2.19: Confustion matrix of the predict death classifier

kB from sklearn.metrics import confusion_matrix
2

k23 predictions = run(predict_death, train_input)
4 confusion_matrix(train_labels, predictions)

array([[442, 0],
[269, 01D

Scikit-Learn provides the confusion_matrix method that we import (line 1). It
takes the actual values as first and the predictions as the second parameter
(line 3).

It returns a two-dimensional array. In the first row, it shows the true nega-
tives (TN) and the false positives (FP). In the second row, it shows the false
negatives (FN) and the true positives (TP).
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We can define the accuracy we measured thus far as:

Y TruePositives + ) TrueNegatives
Accuracy = - (2.1)
Total Population

It does not care whether there is a systematic error, such as the algorithm’s
inability to correctly predict a passenger who survived (true positives) aslong
as it performs well at correctly predicting passengers who die (true nega-
tives).

The confusion matrix offers us more detailed measures of our classifier per-
formance. These are:

+ precision

- recall

- specificity

- negative predictive value (NPV)

The precision is the “accuracy of the positive predictions”. It only looks at
the positive predictions, these are predictions that the passenger survived.

Y TruePositives
Y AllPredictedPositives

(2.2)

Precision =

Let’s have a look at the code:
Listing 2.20: The precision score

Wl from sklearn.metrics import precision_score
Pd print('The precision score of the predict_death classifier is {}'.format(
precision_score(train_labels, predictions)))

The precision score of the predict_death classifier is 0.0

Scikit-Learn provides a function to calculate the precision_score. It takes the
list of actual values and the list of predicted values as input.

Since we did not have a single positive prediction, our precision is not defined.
Scikit-Learn interprets this as a score of 0. 0.

The recall is the “accuracy of the actual positives”. It only looks at the actual
positives.

Y TruePositives

2.3
Y AllActual Positives (2.3)

Recall =
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In Python, itis:
Listing 2.21: The recall score

8 from sklearn.metrics import recall_score
PY print('The recall score of the predict_death classifier is {}'.format(
recall_score(train_labels, predictions)))

The recall score of the predict_death classifier is 0.0

This time, even though recall is defined (the number of actual positives is
greater than 0), the score is 0.0 again, because our classifier did not predict
a single survival correctly. Not a surprise when it always predicts death.

The specificityisthe “accuracy of the actual negatives”. It only looks at actual
negatives (deaths).
Y TrueNegatives

Specificity = 2.4
pecificity Y AllActualNegatives 2.4)

And the ‘negative predictive value’ (NPV) is the “accuracy of the negative pre-
dictions”.
Y TrueNegatives

NegativePredictiveValue(NPV) = S AllPrediciedNegatives (2.5)
redicte

These two functions are not provided out of the box. But with the values we
get from the confusion matrix, we can calculate them easily:
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Listing 2.22: The specificity and the npv

Wl def specificity(matrix):
return matrix[0][0]/(matrix[0]1[0]+matrix[@1[1]) if (matrix[@][@]+matrix
[01[1] > 0) else @

def npv(matrix):
return matrix[0][0]/(matrix[0]1[0]+matrix[11[0]) if (matrix[@][0J+matrix
[1][0] > 0) else 0

cm = confusion_matrix(train_labels, predictions)

print('The specificity score of the predict_death classifier is {:.2f}'.
format(specificity(cm)))

i¥e] print('The npv score of the predict_death classifier is {:.2f}'.format(

npv(cm)))

The specificity score of the predict_death classifier is 1.00
The npv score of the predict_death classifier is 0.62

The function specificity takes the confusion matrix asa parameter (line1). It
divides the true negatives (matrix[@1[0]) by the sum of the true negatives and
the false positives (matrix[01[1]) (line 2).

The function npv takes the confusion matrix as a parameter (line 4) and di-
vides the true negatives by the sum of the true negatives and the false nega-
tives (matrix[11[0]).

These four scores provide a more detailed view of the performance of our clas-
sifiers.

Let’s calculate these scores for our random classifier as well:
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Listing 2.23: The scores of the random classifier

I8 random_predictions = run(classify, train_input)

Pd random_cm = confusion_matrix(train_labels, random_predictions)

3

Y print('The precision score of the random classifier is {:.2f}'.format(
precision_score(train_labels, random_predictions)))

] print('The recall score of the random classifier is {:.2f}'.format(
recall_score(train_labels, random_predictions)))

1] print('The specificity score of the random classifier is {:.2f}'.format(
specificity(random_cm)))

VA print('The npv score of the random classifier is {:.2f}'.format(npv(
random_cm)))

The precision score of the random classifier is 0.34
The recall score of the random classifier is 0.45

The specificity score of the random classifier is 0.47
The npv score of the random classifier is 0.59

Whilethepredict deathclassifier exhibitsa complete absence of precision and
recall, it has perfect specificity and reaches an NPV score that matches the
percentage of negatives in our test dataset (the prevalence).

The random classifier yields more balanced scores. You’ll get a little bit dif-
ferent scores every time you run the classifier. But the values seem to stay in
certain ranges. While the precision of this classifier is usually below e.4 the
npv is above 0.6.

The confusion matrix and related measures give you alot of information. But
sometimes, you need a more concise metric. In fact, the evaluation function
in a machine learning algorithm must return a single measure it can opti-
mize.

And this single measure should unmask a classifier that does not really add
any value.

Unmask the Hypocrite Classifier

Even though the predict death classifier does not add any insight, it outper-
forms the random classifier with regard to overall accuracy. It exploits the
prevalence, the ratio between the two possible values, not being 0.5.
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The confusion matrix reveals more details on certain areas. It shows the
predict death classifier lacks any recall, the accuracy of predicting actual pos-
itives. This is no surprise, since it always predicts death.

But having a whole set of metrics makes it difficult to measure real progress.
How do we recognize that one classifier is better than another? How do we
even identify a classifier that adds no value at all? How do we identify such a
hypocrite classifier?

Let’s write a generalized hypocrite classifier and see how we can unmask it.

Listing 2.24: A hypocrite classifier

4 def hypocrite(passenger, weight):
P return round(min(1,max(0,weight*0.5+random.uniform(o, 1))))

The hypocrite classifier takes the passenger data and a weight. The weight is a
numberbetween —1and 1. Itdenotestheclassifier’stendency to predict death
(negative values) or survival (positive values).

The formula weight*0.5+random.uniform(@, 1) generates numbersbetween —0.5
and 1.5. Theminandmax functions ensure the result to be betweenoeand 1. The
round function returns either o (death) or 1 (survival).

Depending on the weight, the chances to return the one or the other predic-
tion differs.

If weight is —1, it returns —1%0.5+random.uniform(@, 1), a number between —0.5
and 0.5. A number almost always rounding to o (predicted death).

If weight is 0, the formula returns —1*e+random.uniform(e, 1). This is our ran-
dom classifier.

If weight is 1, it returns 1*0.5+random.uniform(e@, 1), a number that is always
greater than 0.5 and thus, rounding to 1(predicted survival).

We can choose the tendency from —1 to 1. —1 always predicts death, o is com-
pletely random, 1 always predicts survival.

Let’s have a look at how the predictions vary. We pass the weight as a hyper-
parameter. Try different values, if you like.
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Listing 2.25: The scores of the hypocrite classifier

8 w_predictions = run(lambda passenger: hypocrite(passenger, —0.5),
train_input)
Pd w_cm = confusion_matrix(train_labels, w_predictions)

¥"q print('The precision score of the hypocrite classifier is {:.2f}'.format(
precision_score(train_labels, w_predictions)))

] print('The recall score of the hypocrite classifier is {:.2f}'.format(
recall_score(train_labels, w_predictions)))

[ print('The specificity score of the hypocrite classifier is {:.2f}'.
format(specificity(w_cm)))

VA print('The npv score of the hypocrite classifier is {:.2f}'.format(npv(
w_cm)))

The precision score of the hypocrite classifier is 0.35
The recall score of the hypocrite classifier is 0.2b6

The specificity score of the hypocrite classifier is 0.73
The npv score of the hypocrite classifier is 0.61

If you run the hypocrite classifier a few times, you may get a feeling for its per-
formance. But let’s create a visualization of it.

The following code runs the hypocrite classifier for different values of weight.
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Listing 2.26: Run the hypocrite classifiers

import numpy as np

# number of steps to consider between —1 and 1
cnt_steps = 40

# a list of the step numbers [0, 1, ..., 38, 39]
steps = np.arange(@, cnt_steps, 1).tolist()

1
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# list of the weights at every step [—1, —0.95, ... 0.9, 0.95, 1.0]
weights = list(map(

lambda weight: round(weight, 2),

np.arange(—1, 1+2/(cnt_steps—1), 2/(cnt_steps—1)).tolist()
))

# list of predictions at every step
1_predictions = list(map(
lambda step: run(
lambda passenger: hypocrite(passenger, weights[stepl),
train_input
),
steps

))

# list of confusion matrices at every steo

1_cm = list(map(
lambda step: confusion_matrix(train_labels, 1_predictions[step]),
steps

))

The range of allowed weights is between —1 and 1. We divide this range into 40
(cnt_steps) steps (line 4). We create lists of the indices (steps=[0, 1, ..., 38,
39], line 7) and of the weights at every step (weights=[—-1, —0.95, ... 0.9, 0.95,
1.0], lines 10-13). We run the hypocrite classifier for every step (lines 17-19) and
put the results into 1_predictions (line 16). Based on the predictions and the
actual results, we calculate the confustion matrix for every step (line 26) and
store them in 1_cm (line 25).

The next piece of code takes care of rendering the two graphs.

The green graph depicts the number of predicted survivals at a step. The red
graph depicts the number of predicted deaths.
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Listing 2.27: Plot the distribution of predictions

import matplotlib.pyplot as plt
import matplotlib

# create a graph for the number of predicted deaths
deaths, = plt.plot(
weights, # point at x—axis
list(map(lambda cur: 1_cm[cur][@]1[0]+1_cm[curl[1][0], steps)),
'lightsalmon', # color of the graph
label="'Predicted death'
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# create a graph for the number of predicted survivals
survivals, = plt.plot(
weights, # point at x—axis
list(map(lambda cur: 1_cm[cur][@]1[1]1+1_cml[curl[1]1[1], steps)),
'lightgreen', # color of the graph
label="'Predicted survival'

)

plt.legend(handles=[deaths, survivals],loc='upper center',
bbox_to_anchor=(0.5, —0.15), framealpha=0.0, ncol=2)

plt.xlabel("Weight")

plt.ylabel("Number of predictions")

plt.show()
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Figure 2.3; Distribution of predictions based on the weight
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We can see that the hypocrite classifier generates the expected tendency in its
predictions. At weight=—1, it always predicts death, at weight=0 it is 50:50, and
at weight=1 it always predicts survival.

Let’s see how the different hypocrite classifiers perform at the four metrics de-
pending on the weight.

Listing 2.28

W8 1_precision = list(map(lambda step: precision_score(train_labels,
1_predictions[step]),steps))

Pd 1_recall = list(map(lambda step: recall_score(train_labels, 1_predictions
[step]l),steps))

] 1_specificity = list(map(lambda step: specificity(l_cm[stepl),steps))

Y8 1_npv = list(map(lambda step: npv(l_cm[step]),steps))

In these four lines, we calculate the four metrics at each step. Let’s visualize
them.

Listing 2.29: Plot the performance measures

I8 m_precision, = plt.plot(weights, 1_precision, 'pink', label="precision")

Pd m_recall, = plt.plot(weights, 1_recall, 'cyan', label="recall")

m_specificity, = plt.plot(weights, 1_specificity, 'gold', label="
specificity")

m_npv, = plt.plot(weights, 1_npv, 'coral', label="npv")

plt.legend(
handles=[m_precision, m_recall, m_specificity, m_npv],
loc="upper center',
bbox_to_anchor=(0.5, —0.15),
framealpha=0.0,
ncol=4)

plt.xlabel("Weight")
plt.ylabel("Number of predictions")
3 plt.show()
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Figure 2.4: Performance measures of the hypocrite classifier

These graphs show some interesting characteristics. specificity and recall
are directly related to the classifier’s tendency either towards predicting
death (higher specificity) or towards predicting survival (higher recall).

Except for the edge cases where all predictions are death or all are survival,
the values for precision and npv seem to be horizontal lines. In fact, precision
relatesto the prevalance 0f 39% survivalsin our data and npv to the prevalance
of 61% deaths.

Listing 2.30: Calculating the mean of the measures

8 1_mean = list(map(lambda step: sum(step)*0.25, zip(1l_precision, 1_recall,
1_specificity, 1_npv)))

Pd m_mean, = plt.plot(weights, 1_mean, 'pink', label="Mean of the measures")

3

Y plt.legend(handles=[m_mean], loc="'upper center',

] bbox_to_anchor=(0.5, —0.15),framealpha=0.0)

(] plt.ylim(o, 1)

¥4 plt.show()
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Figure 2.5: The mean of the measures discloses the absence of
any information gain

When looking at the mean of all four measures, we see an almost flat line. Its
drops at the edges are due to precision and npv being 0 there because there are
no predicted survivals (left edge) respectively no predicted deaths (right edge)
to calculate some measures.

This line indicates the overall level of information provided by all hypocrite
classifiersisequal. And the level isabout 0.5. That is the baseline for a binary
classifier for there are only two possible outcomes.

Even though specific types of hypocrite classifiersare able to trick a single mea-
sure (like accuracy, recall, precision, or npv) by exploiting the prevalence, when
looking at all complementary measures at once, we can unmask the hypocrite
classifier.

However, this does not imply that the mean of these measuresis the best mea-
sure to evaluate the performance of your classifier with. Depending on your
task at hand, you may, for instance, favor precision over recall. Rather, the
implication is that you should look at the overall level of information pro-
vided by the classifier, too. You should not let yourself be dazzled by the clas-
sifier’s performance at a single measure.

Finally, let’s create a resuable function that calculates the measures forusand
displays the results.
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Listing 2.31: A reusable function to unmask the hypocrite classifier
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def classifier_report(name, run, classify, input, labels):

cr_predictions = run(classify, input)
cr_cm = confusion_matrix(labels, cr_predictions)

cr_precision = precision_score(labels, cr_predictions)
cr_recall = recall_score(labels, cr_predictions)
cr_specificity = specificity(cr_cm)

cr_npv = npv(cr_cm)

cr_level = 0.25%(cr_precision + cr_recall + cr_specificity + cr_npv)

print('The precision score of the {} classifier is {:.2f}'.format(name,

cr_precision))

print('The recall score of the {} classifier is {:.2f}'.format(name,

cr_recall))

print('The specificity score of the {} classifier is {:.2f}'.format(

name, cr_specificity))

print('The npv score of the {} classifier is {:.2f}'.format(name,

cr_npv))
print('The information level is: {:.2f}'.format(cr_level))

Let’s use this function to get a report of our random classifier.

Listing 2.32: The report of the random classifier

Wl classifier_report(

P4 "Random PQC",

1 run,

¥4 classify,

] train_input,

] train_labels)

The precision score of the Random PQC classifier is 0.36
The recall score of the Random PQC classifier is 0.47
The specificity score of the Random PQC classifier is 0.48
The npv score of the Random PQC classifier is 0.60

The information level is: 0.48

Listing 2.33




3. The Qubit and the Quankum Skakes

In this chapter, we start with the very basics of quantum computing. The
quantum bit. And we will write our first quantum circuit. A quantum circuit
is a sequence of quantum bit transformations. The quantum program. Let’s
start with the basics.

3.1 Expioring the Quantum Stakes

The world of quantum mechanicsis... different. A quantum system can be in
a state of superposition. A popular notion of superposition is that the system
isin different states concurrently unless you measure it.

For instance, the spin of a particle is not up or down but it is up and down at
the same time. But when you look at it, you find it either up or down.

Or, let’s say you flip a quantum coin. In the air, it has both values heads and
tails. If and only if you catch it and look at it, it decides for a value. Once
landed, itis a normal coin with heads up or tails up.

Anothernotion of superpositionisthat the systemis truly random and there-
fore distinguishes from the systems we know. Tossing a (normal) coin, for
instance, seems random, because whenever you do it, the conditions are
slightly different. And even tiny differences can change the outcome from
heads to tails. The coin is sensitive dependent to initial conditions.

If we were able to measure all conditions precisely, we could tell the outcome.
In classic mechanics, there is no randomness. Things in our everyday world,
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such as the coin, seem random. But they are not. If measured with infinite
precision, randomness would disappear. By contrast, a quantum system is
truly random.

Maybe you wonder: Ok, it’s random. Where’s the big deal?

The big thing is the consequences. In a classic system, a system sensitive de-
pendent to initial conditions, the answer to a question is already determined
before we ask it.

Rather than watching the baseball match tonight, you spend the evening
with your friends. When you return home, even though you don’t know the
results, the match is over and there is a definite result. There could be differ-
ent results, but you simply don’t know the result until you look at it.

Contrarily, in a quantum system, the answer to a question is not determined
up until the time you ask it. And since it is not determined yet, you still can
change the probabilities of measuring distinct states.

If you have doubts, good! Not even Einstein liked this notion. It led him to
his famous statement of God does not play dice.

God does not
FL&:, dice,

Figure 3.1: Albert Einstein

Many physicists, including Einstein, proposed the quantum state, though
hidden, to be a well-defined state. This is known as the hidden variable the-
ory.

There are statistically distinct behaviors between a system following the hid-
den variable theory and a quantum system following the superposition prin-
ciple. And experiments showed that the quantum mechanical predictions
were correct.

For now, let’s accept the quantum state is something different. Later in this
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book, we will have a closerlook atit. And its consequences. But this requires
a little more theory and math.

We turn to the quantum computer. Let’s say you have a quantum bit. We call
it qubit. Unless you observe its value, it is in a superposition state of e and 1.
Once you observe its value, you’ll get @ or 1.

The chances of a qubit to result in either one value don’t need to be 50:50. It
can be 25:75, 67:33, or even 100:0. It can be any weighted probability distribu-
tion.

The probability distribution a qubit has when observed depends on its state.
The quantum state.

In quantum mechanics, we use vectors to describe the quantum state. A pop-
ular way of representing quantum state vectors is the Dirac notation’s “ket”-
construct that looks like |y). In Python, we don’t have vectors. But we have
arrays. Luckily, their structures are similar.

Let’s have a look. We start with the simplest case. Let’s say, we have a qubit
that, when observed, always has the value 0. If you argued this qubit must
have the value o even before it is observed, you wouldn’t be completely wrong.
Yet, you'd be imprecise. Before it is observed, this qubit has the probability of
1 (= 100%) to have the value e when observed.

These are the equivalent representations (ket, vector, array) of a qubit that
always results in e when observed:

|0) = H and in Python [1, e].

Accordingly, the following representations depict a qubit that always results
in 1 when observed:

1) = m and in Python [e, 11.
Ok, enough with the theory for now. Let’s have a look at the code of such a
qubit.

If you haven’t configured your workstation yet, have a look at the brief expla-
nation of how to set up the working environment (section 1.8).

Now, open the Jupyter notebook and test whether Qiskit works.
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Listing 3.1

kB import qiskit
PY qiskit.__qiskit_version__

{'qiskit-terra': '0.16.4',
'qiskit-aer': '0.7.4',
'qiskit-ignis': '0.5.2"',
'qiskit-ibmgq-provider': '0.11.1',
'giskit-aqua': '0.8.2',

'qiskit': '0.23.5'}

If you get a response like this, Qiskit works. Great! We’re ready to create our
first qubit.

Listing 3.2: The first qubit

from giskit import QuantumCircuit

# Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

S urpe

# Define initial_state as |1>
initial_state = [0,1]

# Apply initialization operation to the qubit at position 0
gc.initialize(initial_state, 0)

OWwWX 300

(Y

The fundamental unit of Qiskit is the quantum circuit. A quantum circuitisa
model for quantum computation. The program, if you will. Our circuit con-
sists of a single one qubit (line 4).

We define [0,1]as the initial_state of our qubit (line 7) and initialize the first
and only qubit (at position e of the array) of our quantum circuit with it (line
10).

Remember [0,1]? Thisis the equivalent to |1) = [(1)] . And in plain English, it

is a qubit resulting in the value 1 when observed.

This is it. It’s now time to boot our quantum computer. In case you don’t
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have one, no problem. We can simulate it. (In case you have one: “Cool, let me
know”).

Listing 3.3: Prepare the simulation backend

¥ from giskit import execute, Aer

2

2] # Tell Qiskit how to simulate our circuit

¥"q backend = Aer.get_backend('statevector_simulator')
-1

19 # Do the simulation, returning the result

A result = execute(qc,backend).result()

Qiskit provides the Aer package (that we import atline1). It provides different
backends for simulating quantum circuits. The most common backend isthe
statevector_simulator (line 4).

The execute-function (that we import at line 1, too) runs our quantum circuit
(qc) at the specified backend. It returns a job-object that has a useful method
job.result(). This returns the result object once our program completes it.

Let’s have alook at our qubit in action.

Qiskit uses Matplotlib to provide useful visualizations. A simple histogram
will do. The result object provides the get_counts method to obtain the his-
togram data of an executed circuit (line 5).

The method plot_histogram returns a Matplotlib figure that Jupyter draws au-
tomatically (line 8).

We see we have a 100% chance of observing the value 1.

Listing 3.4: The measured qubit

8 from giskit.visualization import plot_histogram
P4 import matplotlib.pyplot as plt

3

4 # get the probability distribution

] counts = result.get_counts()

)

VA # Show the histogram

p:4 plot_histogram(counts)
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Figure 3.2: The qubit state

1.00

=

0.75

ilitie

0.50

o
el
Q
&

0.25

0.00

Now, let’s move on to a more advanced case. Say, we want our qubit to result
in either o or 1 with the same probability (50:50).

In quantum mechanics, there is the fundamental principle superposition. It
says any two (or more) quantum states can be added together (“superposed”)
and the result will be another valid quantum state.

Wait! We already know two quantum states, |0) and |1). Why don’t we add
them? |0) and |1) are vectors. Adding two vectors is straight forward.

Avectorisageometricobject that hasa magnitude (orlength) and a direction.
Usually, they are represented by straight arrows, starting at one point on a
coordinate axis and ending at a different point.

You can add two vectors by placing one vector with its tail at the other vec-
tor’s head. The straight line between the yet unconnected tail and the yet
unconnected tail is the sum of both vectors. Have alook at the figure 3.3.

Mathematically, it is as easy.

Letii = {ul} and v = [vl} be two vectors.
us V2

The sum of 7 and v is:

- |ur+w
= {uz—kvz} 31

<
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Figure 3.3: Adding two vectors

Accordingly, our superposed state should be y*:

vy= [0+t = Ll)iﬂ N H

superposition

*w (“psi”) is a common symbol used for the state of a quantum system.

We have a computer in our hands. Why don’t we try it?

Listing 3.5: First attempt to superpose two states

# Define state |psi>
initial_state = [1, 1]

# Redefine the quantum circuit
gc = QuantumCircuit(1)

# Initialise the 0th qubit in the state ‘initial_state’
gc.initialize(initial_state, 0)

OoX P wre

# execute the qc
results = execute(qc,backend).result().get_counts()

# plot the results
plot_histogram(results)

QiskitError: 'Sum of amplitudes-squared does not equal one.'

It didn’t quite work. It tells us: QiskitError: 'Sum of amplitudes—squared does

not equal one.'.
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The amplitudes are the values in our array. They are proportional to proba-
bilities. And all the probabilities should add up to exactly 1 (100%). We need
to add weights to the quantum states |0) and |1). Let’s call them « and S.

We weight |0) with a and |1) with 8. Like this:

vy =0y +811) = g 15| = 5]

Amplitudes are proportional to probabilities. We need to normalize them so
that:

@B =1 (3.3)
If both states |0) and |1) should have the same weight, then
o=p

And therefore, we can solve our equation to o:

1 1
2, 2 2 2
o+ =120 =lesa =0 =——
2 V2
And we insert the value for both @ and 8 (both are equal). Let’s try this quan-
tum state:

RIS O

The corresponding array in Python is: [1/sqrt(2), 1/sqrt(2)]. Don’t forget to
import sqrt.
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Listing 3.6: Weighted initial state

from math import sqrt

# Define state |psi>
initial_state = [1/sqrt(2), 1/sqrt(2)]

# Redefine the quantum circuit
gc = QuantumCircuit(1)
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# Initialise the 0th qubit in the state "initial_state’
gc.initialize(initial_state, 0)

# execute the qc
results = execute(qc,backend).result().get_counts()

# plot the results
plot_histogram(results)

Figure 3.4: The qu.bi.& stake
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What is the state of qubit that hasa 25 chance of resulting in e and 75 of result-
ingin1?

The solution is solving the following equation system.

Equation 3.4. This is the definition of a qubit in superposition. This qubit,
when observed, has the probability of a? to result in @ and 2 to result in 1.

V) = alo)+ Bli) = | 3.4
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Equation 3.5. This is the required normalization. It requires the sum of the
squared amplitudes (o and ) to equal 1.

a’+p%=1 (3.5)

Let’s regard the probabilities 25% and 75% as fractions and equate them to o
and B2, respectively.

1 1
2_ - S 3.6
o= ea=g (3.6)

and

g (3.7)

=2 o=

Now, we insert 3.6 and 3.7 into equation 3.4:

|

In Python, the array [1/2, sqrt(3)/2]1representsthe vector [

¥) = 510) %aw:[

N|§wl~

N|§ml~
| I

Now, let’s open our Jupyter notebook and test our calculation.

Listing 3.7: The qubit with a probability of 0.25 to result in O

from qiskit import QuantumCircuit, execute, Aer
from giskit.visualization import plot_histogram
from math import sqrt

gc = QuantumCircuit(1)

initial_state = [1/2, sqrt(3)/2] # Here, we insert the state
gc.initialize(initial_state, 0)

backend = Aer.get_backend('statevector_simulator')

result = execute(qc,backend).result()

counts = result.get_counts()

plot_histogram(counts)
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Figure 3.5: The qubit measurement probabilities
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Phew. In this chapter, we introduced quite a few terms and equations just to
scratch on the surface of quantum mechanics. But the actual source code is
pretty neat, isn’t it?

We introduced the notion of the quantum state. In particular, the state of a
binary quantum system. The quantum bit or qubit.

Until we observe a qubit, it isin superposition. Contrary to a classical bit that
can be either o or 1, a qubit is in a superposition of both states. But once you
observe it, there are distinct probabilities of measuring e or 1.

This meansthat multiple measurements made on multiple qubitsinidentical
states will not always give the same result. The equivalent representations of
a quantum bit that, when observed, has the probability of a? to result in e and
B2 toresultin 1 are:

ly) = a]0) + B|1) = [g}, with «? + B2 = 1. In Python the array [alpha, beta]

denotes this state.

Visual Exploration 0f The Qubit
State

The qubit is a two-dimensional quantum system. Each dimension is denoted
by a standard basis vector:

0) = H in Python [1, eJand
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1) = m,in Python [o, 11.

The state of the qubit is represented by the superposition of both dimensions.
This is the qubit state vector |y) (“psi”).

v) = alo)+ Bli) = | 3.9

In Python, |y) is the array [alpha, betal.
But |y) must be normalized by:
=1 (3.9

Although normalizing the qubit state vector is not a difficult task, doing the
math over and over again is quite cumbersome.

But maybe, there’sanother way. An easy way. Let’s first have alook at a graph-
ical representation of the qubit state |y) in the following figure 5.12.

Flgure 3.6: 2-dimensional qubit system

In this representation, both dimensions reside at the vertical axis but in op-
posite directions. The top and the bottom of the system correspond to the
standard basis vectors |0) and |1), respectively.

When there are two dimensions, the usual way is to put the two

L dimensions orthogonal to each other. While using one axis to
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represent both dimensions is rather an unusual representation
foratwo-dimensional system, itis well suited for a quantum sys-
tem. But more on this later.

Let’s have alook at the arbitrary qubit state vector |y) in this figure 5.12.

Since qubit state vectors are normalized, |y) originates in the center and has
the magnitude (length) of % Due to this equal magnitude, all state vectors
end at the pointed circle. So does |y).

The angle between the state vector |0) and |y), named 6 (“theta”), controls
the proximities of the vector head to the top and the bottom of the system
(dashed lines).

These proximities represent the probabilities of

- a® of measuring |y) as o
- and B? of measuring itas 1.

¢ The proximities o and 8 are at the opposite sides of the state’s

*  probability (|y)) they describe. « is the proximity (or distance)
to |1) because with increasing distance to |1) the probability of
measuring ‘0‘ increases.

Thus, by controlling the proximities, the angle 6 also controls the probabili-
ties of measuring the qubit in either state e or 1.

Rather than specifying the relation between a and  and then coping with
normalizing their values, we can specify the angle 6 and use the required nor-
malization to derive o and 8 from it.

We can deduct the values of @ and 8 and thus the state |y):

(2]
ly) = cosg|0) +sing|1> = {cosg] (3.10)

sin3
In Python the two-field array [cos(theta/2), sin(theta/2)]denotes this state.

There’s one problem left. For 6 € R, what if 1 < 6 < 27? Or in plain English,
what if the 6 denotes a vector pointing to the left side of the vertical axis?

Figure 11.9 shows this situation.



3.2 Visual Exploration Of The Qubit State v

Figure 37: 360° 2-dimensional qu.bi.& svsﬁem

Mathematically, we don’t have a problem. Since we square a and S, their
signs (+ or —) are irrelevant for the resulting probabilities.

But what does it mean? How can either a? or B2 be negative, as the figure
indicates? The answer isi. i is a complex number whose square is negative:
2

i =-—1.

And if @ and 8 are complex numbers (a, f € C), their squares can be negative.

This entails a lot of consequences. And it raises a lot of questions. We will
unravel them one by one in the following sections. For now, we interpret all
vectors on the left-hand side of the vertical axis to have a negative value for

B> (B> <0).

While such a value lets us distinguish the qubit state vectors on both sides of
the vertical axis, it does not matter for the resulting probabilities.
Forinstance, the state |y) = 1) f‘ yields the same probability of measuring e

or 1. It resides at the horizontal axis. And so does |y) = \0>\/§|1>

Although these states share the same probabilities, they are different. And
the angle 0 differentiates between them.

= 2 specifies |y) = ‘O}M that is also known as |+).

And 6 = 3w or 6 = —Z specifies |y) = % thatisalso knownas|—).
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One of the consequences mentioned above of a? or f? being negative is that
our normalization rule needs some adjustments.

We need to change the normalization equation 3.9 to:
lal>+ (Bl =1 (3.11)
This section contained a lot of formulae. The important takeaway is we can

specify quantum states that yield certain probabilities of measuring e and 1
by an angle 6. It saves us doing the normalization manually.

Let’s have a look.

Listing 3.8: Using theta to specify the quantum state vector

from math import pi, cos, sin
from giskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram

def get_state (theta):
"""returns a valid state vector
return [cos(theta/2), sin(theta/2)]
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# play with the values for theta to get a feeling
theta = —pi/2 # affects the probabilities

# create, initialize, and execute the quantum circuit
gc = QuantumCircuit(1)
gc.initialize(get_state(theta), 0)

backend = Aer.get_backend('statevector_simulator')
result = execute(qc,backend).result()

counts = result.get_counts()

# Show the histogram
plot_histogram(counts)
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Figure 3.%: Theta s’aeci&es the qubit state |-
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In this piece of code, we introduced the function getstate (line5). It takes theta
as a parameter and returns the array [cos(theta/2), sin(theta/2)]. Thisisthe
vector we specified in the equation 3.10.

Derive The Proof 0f The
Theta-Formula

In the last section ??, we introduced the formula: 3.10:

0 0 8
ly) = c0s5|0) +sin§|1> = {cosg]

Sll’lj

The structure of this formula derives directly from the definition of the qubit
superposition state.

) = a0} + B1) = [g} (3.1

To prove equation 3.10, we need to prove the following two terms

o= cosg (3.13)

B = sin— (3.14)
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Let’s have a look at our graphical definition of @ and . We already saw this
figure 5.12 in section 3.2.

1)

Figure 39: 2-dimensional qubit system

o and S describe the proximity to the top and the bottom of the system, re-

spectively. 0 is the angle between the standard basis vector: |0) = H and the
qubit state vector |y) it represents.
Any valid qubit state vector must be normalized:

a’+B2=1 (3.15)

This implies all qubit state vectors have the same magnitude (length). Since
theyall originate in the center, they form a circle with the radius of their mag-
nitude (that is half of the circle diameter).

In such a situation, Thales’ theorem states, if

« A, B, and C are distinct points on a circle (condition 1)
- where theline AC is a diameter (condition 2)
- then the angle ZABC (the angle at point B) is a right ang]le.

In our case, the heads of |0), |1), and |y) represent the points A, B, and C, re-
spectively (satisfy condition 1). The line between |0) and |1) is the diameter
(satisfy condition 2). Therefore, the angle at the head of |y) is a right angle.

Now, the Pythagorean theorem states the area of the square whose side is
opposite the right angle (hypotenuse, c) is equal to the sum of the areas of the
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squares on the other two sides (legs a, b).
=d*+b (3.16)

When looking at figure 3.9, again, we can see that a and 8 are the two legs
of the rectangular triangle and the diameter of the circle is the hypotenuse.
Therefore, we can insert the normalization equation 3.15

ceJa2 P Vi=1 (3.17)

The diameter c is two times the radius, thus two times the magnitude of any
vector |y). The length of |y) is thus § = 1.

Since all qubit state vectors have the same length, including |0) and |1), there
are two isosceles triangles (AM|0)|y) and AM|y)|1)).

Have a look at the following figure 3.10.

Figure 3.10: Two bnner isosceles triangles and an outer
rectangular triangle

You can see the two isosceles triangles. The anglesin isosceles trianglesat the
equal legs are equal, as denoted by yand 6.

Further, the sum of all three anglesin a triangle is 180°. Therefore,

042y =180° (3.18)
Let’s solve this after y
180° —
_180°=0 gy 0 (3.19)

2 2
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In a rectangular triangle (the outer one), trigonometric identity says the sine
of an angle is the length of the opposite leg divided by the length of the hy-
potenuse. In our case, this means:

siny = % —a (3.20)

Now, we insert equation 3.19:

0
sin (900 — 5) = (3.21)
With sin(90° — x) = cosx, we can see:
o 0
= COS —
2

This is the first equation 3.13 to prove.

The further proof works accordingly and is straight forward. At the center
(M), the (unnamed) angle inside the dashed triangle is 180° — 6.

180°— 0)+26 = 180° < 5 = 2 (3.22)
2

Again, we use the trigonometric identity. This time it implies:

sind = % =p (3.23)

Finally, we insert 3.22:
sing =P (3.24)

This is the second equation to prove.

Exploring The Observer Effect

A qubitisatwo-level quantum system that isin superposition of the quantum
states |0) and |1) unless you observe it. Once you observe it, there are distinct
probabilities of measuring e or 1. In physics, this is known as the observer ef-
fect. It says the mere observation of a phenomenon inevitably changes that
phenomenon itself. For instance, if you’re measuring the temperature in
yourroom, you're taking away a little bit of the energy to heat up the mercury
in the thermometer. Thisloss of energy cools down the rest of your room. In
the world we experience, the effects of observation are often negligible.
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But in the sub-atomic world of quantum-mechanics, these effects matter.
They matter a lot. The mere observation of a quantum bit changes its state
from a superposition of the states |0) and |1) to either one value. Thus, even
the observation is a manipulation of the system we need to consider when

developing a quantum circuit.

Let’s revisit the quantum circuit from section ??. Here’s the code and the re-

sult if you run it:

Listing 3.9: A circuit without measurement

from giskit import QuantumCircuit, execute, Aer
from giskit.visualization import plot_histogram
from math import sqrt

# Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

# Define state |Psi>
initial_state = [1/sqrt(2), 1/sqrt(2)]

1
R
3
4
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7
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2

# Apply initialization operation to the qubit at position 0
gc.initialize(initial_state, 0)

# Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

# Do the simulation, returning the result
result = execute(qgc,backend).result()

# Get the data and display histogram
counts = result.get_counts()
plot_histogram(counts)
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Figure 3.11: Probabilities of measuring a qu.bi.&
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Our circuit consists of a single one qubit (line 6). It has the initial state [1/sqrt
(2), 1/sqrt(2)](line9) that we initialize our quantum circuit with (line 12).

Here are the Dirac and the vector notation of this state:

RIS T

We add a simulation backend (line 15), execute the circuit and obtain the re-
sult (line 18). The result object provides the get_counts function that provides
the probabilities for the resulting (observed) state our qubit.

Let’s have a look at our circuit. The QuantumCircuit provides the draw function
that renders an image of the circuit diagram. Provide output=text as named
parameter to get an ASCII art version of the image.

Listing &.10: Draw the circuit

gc.draw(output="text"')
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Figure 3.12: The qubit state

This drawing shows the inputs on the left, outputs on the right, and opera-
tions in between.

What we see here is our single qubit (q) and its initialization values (\/iE =

0.707). These values are both, the input and the output of our circuit. When
we execute this circuit, our result-function evaluates the quantum bit in the
superposition state of |0) and |1). Thus, we have a 50:50 chance to catch our
qubit in either one state.

Let’s see what happens if we observe our qubit as part of the circuit.

Listing 3.11: Circuit with measurement

gc = QuantumCircuit(1)
gc.initialize(initial_state, 0)

e

# observe the qubit
gc.measure_all()

# Do the simulation, returning the result
result = execute(qc,backend).result()
counts = result.get_counts()
plot_histogram(counts)

0O WX~ 0

[y
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Figure 3.13: Measuring the qubit inside the circuit
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“Whoa?!”

We get a 100% probability of resulting state 1. That can’t be true. Let’s rerun
the code... (I know, doing the same things and expecting different resultsis a
sign of insanity)

Listing 3.12: Circuit with measurement

gc = QuantumCircuit(1)
gc.initialize(initial_state, 0)
gc.measure_all()

result = execute(qc,backend).result()
counts = result.get_counts()
plot_histogram(counts)

cnPunrpe

Figure 3.14: Measuring the qubit inside the circuit, again
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Again. 100% probability of measuring ... wait ... it’s state o.

No matter how often you run this code, you’ll always get 100% probability of
eitheroeor 1. In fact, if you reran the code many, many times and counted the
results, you'd see a 50:50 distribution.

Sounds suspicious? Yes, you're right. Let’s have a look at our circuit.

Listing 3.13: A circuit with measurement

gc.draw(output="text"')

Figure 3.16: A circuit with measurement

meas

Our circuit now contains a measurement. That is an observation. It pullsour
qubit out of a superposition state and lets it collapse into either e or 1. When
we obtain the result afterwards, there’s nothing quantumic anymore. Itisa
distinct value. And this is the output (to the right) of the circuit.

Whether we observe a 0 or a 1is now part of our quantum circuit.

¢ Thesmall number at the bottom measurement line does not de-

*  pict a qubit’s value. It is the measurement’s index. It starts
counting at 0. The next measurements will have the numbers
1, 2, etc.

Sometimes, we refer to measurement as collapsing the state of the qubit.
This notion emphasizes the effect a measurement has. Unlike classical pro-
gramming, where you can inspect, print, and show values of your bits as of-
ten as you like, in quantum programming, it has an effect on your results.
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If we constantly measured our qubit to keep track of its value, we would keep
itin awell-defined state, either e or 1. Such a qubit wouldn’t be different from
a classical bit. Our computation could be easily replaced by a classical compu-
tation. In a quantum computation, we must allow the qubits to explore more
complex states. Measurements are therefore only used when we need to ex-
tract an output. This means that we often place the all measurements at the
end of our quantum circuit.

In this section, we had alook at the simplest quantum circuit. We initialize a
single qubit and observeit. But it effectively demonstrates the observer effect
in quantum computing. It is something we need to keep in mind, when we
start manipulating our qubits.

Parameterized Quanbtum Circulk

In chapter 2, we created different hypocrite classifiers. These are classifiers
solely building upon chance when predicting the label of a thing. While such
aclassifier can yield seemingly good performancein a single measure, such as
“precision”, it doesnot reach an average far beyond 0.5 four the four measures
that directly result from the confusion matrix (precision, recall, specificity,
and NPV).

In this section, we use a quantum circuit as to solve our binary classifica-
tion task. This quantum circuit is a Parameterized Quantum Circuit (PQC).
A PQC is a quantum circuit that takes all data it needs as input paramters.
Therefore it has its name “parameterized”. It predicts the label of the thing
based on these parameters.

The following image 3.16 depicts the simple PQC we are about to build in this
section.

Figure 3.16: A PQC binary classifier

This PQC takes a single quantum state (y) as its input. It measures the state
and provides its prediction as output.
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We created such a quantum circuit in the last section 3.4, already.

Here’s the source code.
Listing 3.14: A simple PQC binary classifier

i qc = QuantumCircuit(1)

Pl initial_state = [1/sqrt(2), 1/sqrt(2)]
23 qc.initialize(initial_state, 0)

¥4 qc.measure_all()

In fact, this circuit outputs either o or 1, each with a probability of 50%. It
sounds a lot like the random classifier we created in section 2.5.

Let’s wrap this circuit into a function we can use with the run and evaluate
functions we created in that section to see whether it behaves similarly.

Listing 3.15: The parameterized quantum circuit classifier

B from giskit import execute, Aer, QuantumCircuit

P4 from math import sqrt

k23 from sklearn.metrics import recall_score, precision_score,
confusion_matrix

) def pgc_classify(backend, passenger_state):
"""backend —— a giskit backend to run the quantum circuit at
passenger_state —— a valid quantum state vector"""

# Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

# Define state |Psi> and initialize the circuit
gc.initialize(passenger_state, 0)

# Measure the qubit
gc.measure_all()

# run the quantum circuit
result=execute(qc,backend).result()

# get the counts, these are either {'0': 1} or {'1': 1}
counts=result.get_counts(qc)

# get the bit 0 or 1
return int(list(map(lambda item: item[0], counts.items()))[0]1)
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The first difference to notice is the function takes two parameters instead of
one (line5). The first parameteris a Qiskit backend. Since the classifier will run
a lot of times in a row, it makes sense to reuse all we can. And we can reuse
the backend.

The second parameter differs from the classifiersthus far. It doesnot take the
passenger data, but a quantum state vector (passenger_state) as input . This is
not a problem right now, since all the hypocrite classifiers we developed so
farignored the data anyway.

The function creates a quantum circuit with one qubit (line 12), initializes it
with the passenger_state (line 15), measures the qubit (line 18), executes the
quantum circuit (line 21) and retrieves the counts from the result (line 24). All
these steps did not change.

But how we return the counts is new (line 27). counts is a Python dictionary.
It contains the measurement result (either o or 1) as a key and the probability
as the associated value. Since our quantum circuit measures the qubit, it col-
lapsed to a finite value. Thus, the measurement probability is always 1. Con-
sequently, counts is either{'e': 1or{'1': 13.

All we’re interested in here is the key. And this is what we return.

We start (from inner to outer) with the term counts. items(). It transforms the
Python dictionary into a list of tuples, like [('@', 1)1. Since we only have one
key in the dictionary, there is only one tuple in the list. The important point
istoget the tupleratherthan the dictionary’s key-value construct because we
can access a tuple’s elements thorugh the index.

This is what we do in the function lambda: item: item[@]. It takes a tuple and
returns its first element. We do this for every item in the list (even though
thereisonly oneitem) by using list(map(...)). From thislist, we take the first
(and only) item (either 'e' or '1') and transform it into a number (int(...)).

Before we can run it, we need to load the prepared passenger data.
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Listing 3.16: Load the data

¥ import numpy as np

2

k2] with open('data/train.npy', 'rb') as f:
4 train_input = np.load(f)

] train_labels = np.load(f)

&

yd with open('data/test.npy’', 'rb') as f:
i:id test_input = np.load(f)

¥] test_labels = np.load(f)

The following code runs the pqc_classifier with the initial state with a proba-
bility of 0.5 to measure @ or 1, respectively (line 5).

Further, we create a backend (line 2) and provide it as a parameter to be
reused (line 8).

Listing 3.17: The scores of the random quantum classifier

B # Tell Qiskit how to simulate our circuit
P backend = Aer.get_backend('statevector_simulator')
3
4 # Specify the quantum state that results in either 0 or 1
] initial_state = [1/sqrt(2), 1/sqrt(2)]
&
VA classifier_report("Random PQC",
4 lambda passenger: pqgc_classify(backend, initial_state),
¥l train_input,
i¥e} train_labels)

The precision score of the Random PQC classifier is 0.35
The recall score of the Random PQC classifier is 0.46

The specificity score of the Random PQC classifier is 0.46
The npv score of the Random PQC classifier is 0.57

The information level is: 0.46

When we run the pqc_classify classifier with the initial state, we can see that
it yields the same scores as the random classifier did.

But how these two classifiers create the results is completely different.
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The classic “random” classifier uses the function random and initializes it, as
depicted by the following code snippet.

Listing 3.18: Initialization of classical (pseudo-)random

k¥ import random
P random. seed(a=None, version=2)

We provide None as the randomness source (a). Thisimplies the function takes
a value from the operating system. It appears random, but it is not. If we
knew the value it gets from the operating system or if we specified a distinct
value ourselves, we could reproduce the exact predictions.

That’s why Python’s random-function generates pseudo-random (see Python-
docs) numbers.

By contrast, the PQC generates truly random results (when being run on a
real quantum computer). This is in accordance with one of the interpreta-
tions of the quantum state of superposition. we discussed in section (??).

Nevertheless, we have not used anything quantumic yet which would make
us see the difference between classical pseudo-random and quantumic truly
random.

Variakional Hfjbr&d
Quantum-Classical Algorithm

The PQC binary classifer we created in the previous section 3.5 is as good as
the random classifier. Or as poor as. Because it does not provide any increase
in the information level.

This is going to change now. So far, we always feed the PQC with the same
1

initial state: |y) = [\?] , with the corresponding array in Python: [1/sqrt(2),

V2
1/sqrt(2)].

This state does not take into account the passenger data at all. It is a hyp-
ocrite classifier, such as the classifiers we build in section 2.7.Hypocrite clas-
sifiers solely use chance when predicting the label of a thing. While such a
classifier can yield seemingly good performance in a single measures, such
as “precision”, it does not reach an average above 0.5 for the four measures


https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
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that directly result from the confusion matrix (precision, recall, specificity,
and NPV). It does not provide any information gain.

In order to improve our classifier, we need to use the passenger data. Even
though we prepared the passenger data into normalized numerical data, it
does not fit the quantum state vector we need to feed into our PQC. We need
to pre-process our passenger data to be computable by a quantum computer.

In fact, we also need to post-process it. We implicitly post-processed the re-
sults as part of the return statement, as shown in the following snippet.

Listing 3.19

Wl def pgc_classify(backend, passenger_state):
2 I
3

ey # get the bit 0 or 1
] return int(list(map(lambda item: item[0], counts.items()))[0])

Since we have a binary classification task, our prediction isin facte or 1. Our
post-processing is limited to transforming the output format. But in any
other setting, post-processing may involve translation from the output of the
guantum circuit into a useable prediction.

Altogether, we wrap the PQC into a process of classical pre- and post-
processing. This is an algorithm with an outer structure running at a clas-
sical computer and an inner component running on a quantum computer. It
is a Variational Hybrid Quantum-Classical Algorithm and it is a popular ap-
proach for near-term quantum devices.

Figure 3.17 shows the overall architecture of our simple Variational Hybrid
Quantum-Classical Algorithm.

The datais pre-processed on a classical computer to determine a set of param-
eters for the PQC. In our simple case, this is the quantum state vector |y).

The quantum hardware uses the intitial quantum state, works with it and
performs measurements. Allits calculations are parameterized. So, they are
relatively small and short-lived. In our case, we only measure the quantum
state. We do not use any further parameters beyond |y).

Finally, the measurement outcomes are post-processed by the classical com-
puter to generate a prediction.

The overall algorithm consists of a closed loop between the classical and
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Figure 3.17: A Variational Hybrid Quantum-Classical Algorithm

quantum components.
Let’s separate our code thus far into the three parts:

« Pre-processing
- PQC
« Post-processing

Listing 3.20: Pre-processing template

Wl def pre_process(passenger):

> XL

3 passenger —— the normalized (array of numeric data) passenger data
4 returns a valid quantum state

1

1] quantum_state = [1/sqrt(2), 1/sqrt(2)]

¥d return quantum_state

The function pre_process takes the passenger data as an array of numeric data.

It returns a valid quantum state vector. In this first version, it returns the
balanced state of measuring o or 1 with equal probabilities.
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Listing 3.21: The parameterized quantum circuit

def pqc(backend, quantum_state):
backend —— a qiskit backend to run the quantum circuit at
quantum_state —— a valid quantum state vector

returns the counts of the measurement

# Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

1
R
3
4
s
&
7
¥
K

# Define state |Psi> and initialize the circuit
gc.initialize(quantum_state, 0)

# Measure the qubit
gc.measure_all()

# run the quantum circuit
result=execute(qc,backend).result()

# get the counts, these are either {'0': 1} or {'1': 1}
counts=result.get_counts(qc)

return counts

The function pqc is the PQC. It takes a quantum backend and a valid
quantum_state as input parameters.

It prepares and runs the quantum circuit before it returns the counts of its
measurements.

Listing 3.22: Post-processing

Wl def post_process(counts):

> XL

k.l counts —— the result of the quantum circuit execution
4 returns the prediction
&
&

return int(list(map(lambda item: item[@], counts.items()))[0])

The function post_process takes the counts as input and returns the prediction
(see section 3.5 for the detailed explanation of how to transform the counts
dictionary into the prediction).
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Let’s put it all together.

Listing 3.23: The scores of the random quantum classifier

B # Tell Qiskit how to simulate our circuit
P4 backend = Aer.get_backend('statevector_simulator')

3

Y classifier_report(

] "Variational",

8] lambda passenger: post_process(pqc(backend, pre_process(passenger))),
yd train_input,

iid  train_labels)

The precision score of the Variational classifier is 0.43
The recall score of the Variational classifier is 0.54

The specificity score of the Variational classifier is 0.51
The npv score of the Variational classifier is 0.62

The information level is: 0.52

We first create the statevector_simulator backend we can reuse for all our pre-
dictions (line 2).

We use the classifier_report wrapping function we developed in section 2.7.

Besides an arbitrary name it uses in the output (line 5) the main input is the
classifier we provide (line 6).

We provide an anonymous (lambda) function (a function without a name) as
our classifier. It takes a single parameter passenger and runs (from inner to
outer) the pre_process function with the passenger as parameter. We put the
result alongside the backend into the pgc function whose result we put into the
post_process function.

When we run the pqc classifier with the initial state, we can see that it yields
the same scores as the random classifier.

Now, it’s finally time to build a real classifier. One that uses the actual passen-
ger data to predict whether the passenger survived the Titanic shipwreck or
not.

Let’s start at the end. The current post-processing already returns either e or
1. This fits our required output, since o represents the passenger died and 1
represents the passenger survived.
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The current PQC measures the provided quantum state vector and returns
the counts. We could leave it unchanged, if we provided as input a vector
whose probability corresponds to the passenger’s actual probability to sur-
vive.

The passenger data consists of an array of seven features. We already trans-
formed all features into numbers between 0 and 1 (section 2.4).

Thus, it is the task of the pre-processing to translate these seven numbers
intoa quantum state vector whose probability correspondsto the passenger’s
actual probability to survive.

Finding such a probability is the innate objective of any machine learning al-
gorithm.

Our data consists of seven features. The main assumption is these features
determine or at least affected whether a passenger survived or not. If that
wasn’t the case, wewouldn’t be able to predict anything reliably. Let’sassume
the features determine survival.

The question then is, how do these seven features determine survival? Is
one feature more important than another? Is there a direct relationship be-
tween a feature and survival? Are there any interdependencies between the
features, such as if A then B indicates survival. But if not A, then B is irrele-
vant but C is important.

But before we use sophisticated tools (such as neural networks) that are able
to discover complex structures of how the features determine the outcome,
we start simple.

We assume all features are independent from each other and each features
contributes more or less to the survival or death of the passenger.

Therefore, we say the overall probability of survival P(survival) is the sum of
each feature’s value F times the feature’s weight ur (“mu”).

P(survival) =Y (F - ur) (3.25)

Let’s have alook at what this means in Python.
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Listing 3.24: weight a passenger's feature

Wl def weight_feature(feature, weight):

> L

k] feature —— the single value of a passenger's feature
d weight —— the overall weight of this feature

1 returns the weighted feature

- K

¥d return featurexweight

The weight_feature function calculates and returns the term F - ur. This func-
tion calculates how much a passenger’s feature, the age for instance, con-
tributes to this passenger’s overall probability to survive. The higher the
weighted value, the higher the probability.

Next, we need to add all the weighted features to calculate the overall proba-
bility.
Listing 3.25: Calculate the overall probability

from functools import reduce

def get_overall_probability(features, weights):

features —— list of the features of a passenger

weights —— list of all features' weights

return reduce(
lambda result, data: result + weight_feature(*data),
zip(features, weights),
0

)
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The function get_overall_probability takes two parameters. First, the list of a
passenger’s feature values. This is a passenger’s data. Second, the list of the
feature weights.

We construct a list of tuples for each feature (line 10) containing the feature
and its weight. Python’s zip-function takes two separate lists and creates the
respective tuple for each two elements in the lists.

We reduce this list of (feature, weight) into a single number (line 8). We call
the weight_feature-function for each of the tuples and add up the results (line
9), starting with the value o (line 11).
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Now, we need to calculate the weights of the features. These are similar
across all passengers. We build the weights upon the correlation coefficients.

The correlation coefficient is a measure of the relationship between two vari-
ables. Each variable is a list of values. It denotes how much the value in one
list increases as the value of the other list increases. The correlation coeffi-
cient can take values between —1 and 1.

- A correlation coefficient of 1 means that for every increase in one vari-
able, there is a proportional increase in the other.

« A correlation coefficient of —1 means that for every increase in one vari-
able, there is a proportional decrease in the other.

- A correlation coefficient of @ means that the two variables are not lin-
early related.

We calculate the correlation coefficient for each feature in our dataset in re-
lation to the list of 1abels. In the following code, we thus separate our dataset
into a list of the columns (line 4).

The term 1list(map(lambda passenger: passenger[i], train_input transforms
each passenger’s data into its value at the position i. And we do this for i in
range(0,7). It means we do this for each column.

Listing 3.26: Calculate the correlation coefficients

from scipy.stats import spearmanr

# separate the training data into a list of the columns
columns = [list(map(lambda passenger: passenger[i], train_input)) for i
in range(0,7)]

S ure

# calculate the correlation coefficient for each column

correlations = list(map(lambda col: spearmanr(col, train_labels)[0],
columns))

b:d correlations

~N 0

[-0.3197157323427042,
-0.578307132534222,

-0.07119068845990383,
0.09087327268445101,
0.13761444319293503,
0.31592964952566327 ,
-0.1745346616390969]
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There are different types of correlation coefficients. The most frequently
used are the Pearson and Spearman correlation methods.

The Pearson correlation is best suited for linear continuous variables
whereas the Spearman correlation also works for monotonic ordinal vari-
ables. Since we have some categorial data (Plass, Sex, and Embarked), we use the
Spearman method to calculate the correlation coefficient.

Scipy provides the function spearmanr for us. We call this function for each col-
umn and the train_labels (line 7). The function returns two values, the corre-
lation coefficient and the p-value. We’re only interested in the first (at index

0).
The correlation coefficients range from —0.58 to 0.32.

Let’s put this all together in the pre-processing.
Listing 3.27: The weighting pre-processing

k8 from math import pi, sin, cos

] def get_state (theta):
"""returns a valid state vector from angle theta
return [cos(theta/2), sin(theta/2)]

def pre_process_weighted(passenger):

passenger —— the normalized (array of numeric data) passenger data
returns a valid quantum state

# caluclate the overall probability
mu = get_overall_probability(passenger, correlations)

# theta between 0 (]0>) and pi (|1>)
quantum_state = get_state((1—mu)*pi)

return quantum_state

We use the function get_state from section 3.2. It takes the angle theta and
returns a valid quantum state. An angle of 0 denotes the state |0) that is the
probability of 100% of measuring . An angle of 7 denotes the state |1) that is
the probability of 100% of measuring 1.

Accordingly, we multiply the overall probability we calculate at line 14 with
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pi to specify an angle up to z (line 17). Since the correlation coefficients are
between —1 and 1 and most of our coefficients are negative, a value of u to-
wards —1 implies the passenger actually died. Thus, we reverse the angles by
calculating (1—mu)#*pi.

Now, we’re ready to run the classifier. Let’s feed it into the classifier_report
wrapping function.

Listing 3.28: Run the PQC with the weighted pre-processing

8l backend = Aer.get_backend('statevector_simulator')

2

] classifier_report("Variational",

Y lambda passenger: post_process(pgqc(backend, pre_process_weighted(
passenger))),

1 train_input,

] train_labels)

The precision score of the Variational classifier is 0.77
The recall score of the Variational classifier is 0.61

The specificity score of the Variational classifier is 0.88
The npv score of the Variational classifier is 0.77

The information level is: 0.76

We achieve an overall information level of about 0.73 to 0.77. Not too bad, is
it? But before we’re start to party, we need to test our classifier. We “trained”
the classifier with the training data. So it has seen the data before we just
used.

Let’s run the classifier with the test dataset.
Listing 3.29: Test the PQC-based classifier on data it has not seen before

il classifier_report("Variational—Test",

Pl lambda passenger: post_process(pgc(backend, pre_process_weighted(
passenger))),

k]l test_input,

4 test_labels)
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The
The
The

precision score of the Variational-Test classifier is 0.60
recall score of the Variational-Test classifier is 0.55
specificity score of the Variational-Test classifier is 0.85
npv score of the Variational-Test classifier is 0.82
information level is: 0.70

The overall information level is somewhere between 0.66 and 0.71. This is
only a little bit lower than the value we get when running it on the training
data. The algorithm seems to generalize (to a certain extent).

Most importantly, in comparison to the hypocrite classifiers, we see a signif-
icant increase in the information level. This classifier provides some actual
insights. Not too many. But some.

Itis our first working Variational Hybrid Quantum-Classical Classifier.



15, Whatl's Next?

You've reached the end of the preview of Hands-On Quantum Machine
Learning with Python. I hope you enjoyed reading it thus far. And I hope
you stay with me in the journey on learning about quantum machine learn-
ing.

We have just scratched the very surface of quantum machine learning. We
created a simple Variational Hybrid Quantum-Classical Classification Algo-
rithm.

But this algorithm is only the beginning. It is among the simplest classifiers
we can imagine. Even though we use a Parameterized Quantum Circuit, we
didn’t do anything classical computers can’t do.

In the upcoming chapters, we will explore how to create more sophisticated
quantum circuits. And we will learn how to use entanglement and interfer-
ence to reduce the complexity of a problem at hand.

Thereisa lot to discover in quantum machine learning. And with Hands-On
Quantum Machine Learning With Python, you will continue discovering it
in a practical and easy to follow manner. You'll get all the knowledge you
need to implement quantum-based machine learning algorithms.

In this book, we will go far beyond the basics. We will learn how to create
state-of-the-art quantum machine learning algorithms.

Hands-On Quantum Machine Learning With Python will equip you with all
you need to become a “Quantum Machine Learning Engineer” - the job to be-
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come the sexiest job of the 2020s.

Hands-On Quantum Machine Learning With Python is currently work in
process. While I continue working on the book, I'd appreciate your interest
and I'll be happy to provide you with the newest insights I gathered.

Don’t miss the regular updates on Substack, Medium, and www. pygml . com.
If you like, please provide me with feedback at mail@pyqgml.com.

You can also mail me if you have any other question regarding quantum ma-
chinelearning in general. I’ll strive to reply. Most likely, others will have the
same question, so I'll be happy to include the answers in the book once it is
ready.

Thank you for reading.


https://pyqml.substack.com/
https://medium.com/@fzickert
www.pyqml.com
mailto:mail@pyqml.com
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