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We present an entangled quantum radar protocol. It consists in scanning the sky with a thin
Gaussian beam and measuring the travel time of the radiation reflected from the target, as in
conventional radars. Here the Gaussian beam is composed of N photons entangled in the frequency
degrees of freedom. We show that this provides a

√

N quantum enhancement over the unentangled
case, as is usual in quantum metrology.

In this paper we introduce a radar protocol that can
achieve quantum enhanced ranging and target detection.
Other quantum radar protocols [1–4] are typically based
on the quantum illumination primitive [5, 6]: they can
only discriminate the target presence or absence at a pre-

determined specific point, which implies that one must
scan the whole 3d space in search of a target, which is im-
practical and time-consuming. Recently, a protocol that
claimed to achieve quantum enhanced ranging capabil-
ities was proposed in [7]. Unfortunately, its theoretical
analysis was flawed as it was based on an incorrect optical
transfer function [8]. This paper then, to our knowledge,
presents the only known three dimensional quantum en-
hanced radar protocol that can give quantum-enhanced
ranging to the target: we remind that radar stands for
RAdio Detection And Ranging. A protocol for enhanced
ranging in the idealized one-dimensional case was pre-
sented in [9], and this protocol is a sort of 3d extension
of it. The analysis presented here is agnostic to the wave-
length used, so the same protocol can be used also in the
optical regime (lidar). It is also more practical than the
previous protocol [7] since it does not require wideband

radiation entangled in the wave vector ~k which would re-
quire large antennas or antenna arrays: the protocol pre-
sented here only employs Gaussian thin beams that can
be produced with small antennas (or lasers). The beams
are entangled only in the frequency degrees of freedom,
which is more practical. There is no quantum enhance-
ment in the transversal direction, although this feature
can be added to our protocol, for example using the tech-
niques presented in [10], namely by injecting squeezed
vacuum in the modes orthogonal to the Gaussian mode
used by the protocol, or with similar techniques.

As in the case of most other quantum metrology proto-
cols [11–15], we show an enhancement in the precision of

the order of
√
N , where N is the number of photons em-

ployed in the ranging procedure. Namely, we show that
this protocol can achieve the Heisenberg bound in preci-
sion in the ideal noiseless situation. As usual, the situa-

tion becomes extremely more complicated in the presence
of noise, such as loss of photons, but the usual general
procedures and techniques to deal with noise can be ap-
plied also in this case [16–19], e.g. one can increase the
robustness by reducing the entanglement (and hence the
precision gain) [20].
The outline follows: we start in Sec. I by showing how

one can consistently derive the correct transfer functions
in quantum optics, based on the quantization of the elec-
tromagnetic (EM) field which is reviewed (to set the no-
tation) in App. A. We then show in Sec. II how these
techniques can be used to give a quantum description
of the usual classical radar protocols. This is useful to
show what are the ultimate bounds (due to quantum me-
chanics) that can be achieved by these protocols in the
absence of entanglement. Finally, in Sec. III we intro-
duce and analyze our proposed protocol, and show its√
N enhancement.

I. QUANTIZATION OF OPTICS THROUGH
TRANSFER FUNCTIONS

In this section we review how optical transfer func-
tions can be consistently quantized. The notation and
the framework we employ is given in App. A. The linear-
ity and shift-independence form of the Helmholtz equa-
tion (A3) implies that its solutions Uω(~r) can be shifted
in space, e.g. along the z axis [21]:

Uω(~r
′) =

∫

d2~rt Uω(~rt, z) hω(~rt
′, ~rt, z

′ − z) , (1)

where the t index represents the two-dimensional trans-
verse vector ~rt = (x, y), and where ~r = (~rt, z) and hω is
the transfer function that takes the solution Uω at the
xy plane at position z and, with a convolution, moves
it to the xy plane at position z′ (so the left-hand-side
is independent of z). This allows us to obtain the field
at all positions starting from the boundary values of the
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field in the plane xy at position z. Of course, the general
solution of the field is given by (A1), where one must
sum Uω over all components ω. Indeed, replacing Eq. (1)
into (A2), we obtain the whole field A(t, ~r ′) at position
~r ′ = (~r ′

t, z
′) from a field on the plane xy at position z at

time t = 0 (boundary conditions):

A+(t, ~r ′) =

∫

dω d2~rtUω(~rt, z) hω(~rt
′, ~rt, d)e

−iωt, (2)

where, for simplicity of notation, we consider only the
positive-energy component of the field A+, namely only
the first term in the integral of (A2).
This transfer function formalism is developed in the

classical case but it can be transferred to the quantum
case by first expressing the solutions Uω(~r) in terms of
plane waves ei~κ·~r, and then associating to each plane
wave an amplitude a(~κ) as done in the customary EM
quantization (see App. A). Namely,

A+(t, ~r ′) =

∫

d2~rt d
3~κ hωκ

(~rt
′, ~rt, d)a(~κ)e

−i(ωkt−~κ·~r), (3)

where ~r = (~rt, z), ~r
′ = (~r ′

t, z
′), and the integral over ω

is contained in the integral over ~κ, since ωκ = cκ. [More
rigorously, the integral over ω comes from (2), whereas in
the input field we are considering only the ω component
Uω(~r), so we need to integrate only on the directions
~κ/κ as discussed below Eq. (A4).] For example, ~r may
represent the object plane and ~r ′ the image plane in an
imaging apparatus, whose transfer function is given by
hω [22]. Eq. (3) is the main result of this section.
This is the field operator, so by itself it says nothing

about the physics: operators in quantum mechanics only
acquire values when applied to states, e.g. the probabil-
ity p(t, ~r) ∝ |〈0|A+|ψ〉|2. Alternatively, we may be inter-
ested in other expectation values of the field in state |ψ〉.
The field degrees of freedom (including its boundary con-
ditions) are encoded into |ψ〉. E.g., for a single photon
with ψ(~κ) ∝ α(~κ) [see Eq. (A10)], we have

〈0|A+(t, ~r ′)|ψ〉

=

∫

d3~κ d3~κ′ d2~rt hω′ e−i(ω′t−~κ′·~r)α(~κ)〈0|a(~κ′)a†(~κ)|0〉

=

∫

d3~κ d2~rt hω e
−i(ωt−~κ·~r) α(~κ)

=

∫

dω d2~rt hω(~rt
′, ~rt, d) Uω(~r) , (4)

where we used the fact that integrating α(~κ)ei~κ·~r over the
directions of ~κ, one obtains Uω(~r) with ω = cκ, as is clear
by the comparison between Eqs. (A2) and (A4). This
result is what one would expect from (1) by integrating
over ω both members.

Free field transfer function

The specific form of the function hω depends on what is
present between the two xy planes at z and z′, and on the

approximations used. In the case of vacuum propagation
with the Fresnel approximation, we get ([21], Eq. 4.1-14)

hω(~rt
′, ~rt, d) =

iκ

2πd
e−iκ(~rt−~rt

′)2/d e−iκd , (5)

with d = z′ − z the distance between the two planes.
While the Rayleigh-Sommerfeld diffraction can give bet-
ter results in some cases, in the regimes we are inter-
ested, the Fresnel approximation that gives rise to (5) is
sufficient to our aims. We will be using Eq. (5) in the
following.

II. QUANTUM TREATMENT OF A
CLASSICAL RADAR/LIDAR PROTOCOL

A radar/lidar works by scanning the sky with a direc-
tional beam and measuring the time it takes for it to be
bounced back. The direction of the beam and the time
of flight suffice to do a full 3d localization of the target.
In this section we analyze a classical radar/lidar proto-
col using quantized light to show what are the ultimate
bounds imposed by quantum mechanics to such classical
(unentangled) protocols.
As directional beam, we consider a Gaussian beam.

For simplicity we will consider the target as a perfectly
(or partially) reflecting mirror orthogonal to the beam di-
rection, of size larger than the beam waist at the target
location. In this way we are guaranteed that the beam
that returns to the antenna is still in a (possibly attenu-
ated) Gaussian beam, see Fig. 1. The case in which the
target is smaller than the beam waist should also not be
too difficult: the returning beam will be a spherical wave
originating at the target.

(a) Sending (b) Receiving

Target

Source/
receiving
antenna

FIG. 1: Sketch of the quantum radar protocol. A Gaussian
beam composed by frequency-entangled photons bounces off
the target and returns to the sender’s location. By measuring
the average photon round-trip time, the sender can recover
the target’s position with quantum enhanced accuracy.

The Gaussian beam for every frequency ω has an am-
plitude Uω(~r) = ϕ(ω)Gω(~r), where ϕ(ω) is the spectral
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amplitude (the amplitude for each frequency ω in the
light) and Gω is ([21], Eq. 3.1-7)

Gω(~r) ∝
1

W (z)
e
−

κr2t
2z0W2(z) e−i[κz+

κr2t
2zR(z)−arctan(z/z0)] (6)

where W (z) ≡
√

1 + z2/z20 , R(z) ≡ 1 + z20/z
2, z0 is a

(length) constant that, together with the direction of the
z axis, fully specifies Gω(~r). It is possible to check that
this solution for fixed z is propagated to an arbitrary z′

through the transfer function (5). The field A is obtained
by integrating Uω over ω, as in Eq. (A1):

A(t, ~r) =

∫

dω e−iωt ϕ(ω)Gω(~r) . (7)

We now consider a single photon in a Gaussian beam1.
Since the light intensity |A(~r)|2 at each point is di-
rectly proportional to the probability of finding the pho-
ton there (as discussed above) [21, 23], we can choose

ψ̃(~r) ∝ A =
∫

dω ϕ(ω) Gω(~r), using (7) with t = 0 (be-
cause of the Heisenberg picture) and the proportionality
constant chosen by the normalization condition. Namely,
the photon wavepacket has probability amplitude propor-
tional to Gω(~r) for each frequency ω, and the probability
amplitude of having frequency ω is given by ϕ(ω). So
the state is

|ψ〉 =
∫

d3~ρ ψ̃(~ρ) a†(~ρ)|0〉 =
∫

d3~κ′ G̃(~κ′) a†(~κ′)|0〉 , (8)

where G̃(~κ) is the Fourier transform of ϕ(ω)Gω(~ρ), which
clearly only contains the frequency ω (the amplitude ϕ is

included in G̃). We can write the field at the image plane,
i.e. the detector position ~r ′ in terms of the field at the
target position ~r using (3), with the transfer function (5).
Then, the probability amplitude of finding the photon in
t, ~r ′ is

〈0|A+(t, ~r ′)|ψ〉 = (9)
∫

d2~rt d
3~κ hω(~rt

′, ~rt, d) e
−i(ωkt−~κ·~r)〈0|a(~κ)×

∫

d3~κ′G̃ω′(~κ′) a†(~κ′)|0〉 =
∫

d2~rt d
3~κ hω(~rt

′, ~rt, d) e
−i(ωt−~κ·~r) G̃(~κ) ∝

∫

d2~rt dω hω(~rt
′, ~rt, d) e

−iωt ϕ(ω)Gω(~rt, z),

1 It would be more appropriate to use a coherent state (or a ther-
mal state) to model a classical beam, but since the photons in co-
herent states are completely uncorrelated (Poissonian statistics),
one can easily obtain the same arrival statistics as a coherent
state |α〉 (or its thermal mixtures) by considering what happens
to N = |α|2 uncorrelated single photons. (Of course the photon
number statistics will be different!)

where we used the commutator (A6) in the second equal-
ity, and in the third we used the far field condition
κz ∼ κ ≫ κx, κy to separate the integral over ~κ into
a frequency and a transverse part ~κt: d

3~κ ∝ dωd2~κt, so
that the integral of ei~κ·~rψ(~κ) over the transverse part of
~κ gives the spatial field at frequency ω, namely Uω(~r) =
ϕ(ω)Gω(~rt, z) with ~r = (~rt, z) [compare Eqs. (A2) and
(A4)]. Eq. (9) is compatible with what one would expect
from the transfer function of the classical amplitudes:
see Eq. (1) when the time evolution of the output field
is added and both members are integrated over ω. We
now use the fact that the free space transfer function
(5) applied to a Gaussian beam (6) translates it forward
by a factor d, the distance between target and receiver
(namely, a Gaussian beam is transformed in a Gaus-
sian beam thanks to the hypothesis that the target is
a partially reflecting mirror larger than the beam waist).
Then, (9) becomes

〈0|A+(t, ~r ′)|ψ〉 =
∫

dω e−iωtϕ(ω)Gω(~rt
′, z + d) . (10)

As expected, at the image plane at position z′, it gives a
pulse that is delayed by the transit time to the target. To
see this, consider the expression (10) at the center of the
image plane ~rt

′ = 0 where, from (6) we see that Gω(~rt
′ =

0, z) ∝ e−i[κz−arctan(z/z0)], so that (10) becomes
∫

dω e−iω[t+(z+d)/c]−i arctan((z+d)/z0)ϕ(ω)

= ϕ̃(t+ (z + d)/c) e−i arctan((z+d)/z0) , (11)

where ϕ̃ is the Fourier transform of ϕ. Eq. (11) describes
a pulse of spectral amplitude ϕ(ω) and temporal ampli-
tude ϕ̃(t) that is delayed by an amount (z + d)/c, where
d is the distance between target and receiver and z = d
is the position of the target. By measuring the time of
arrival of the photon, one can obtain twice the distance
2d to the target, as expected for a radar. The statistical
error in this measurement is given by the width ∆τ of
ϕ̃(τ), proportional to the inverse of the bandwidth ∆ω
of ϕ(ω).
Now we could do the same calculation with a coherent

state |α〉 instead of a single photon state (8), with |α〉 =
⊗

~κ |α(~κ)〉 with |α(~κ)〉 eigenstates of a(~κ): a(~κ)|α(~κ)〉 =
α(~κ)|α(~κ)〉. This calculation should give exactly the same
outcome as a classical field amplitude α(~κ), see Eq. (A4).

III. QUANTUM RADAR/LIDAR PROTOCOL

We now show how one can obtain an increased local-
ization precision by using frequency-entangled light. For
simplicity of notation, we will consider only the case of
N = 2 entangled photons. This can then be extended to
arbitrary N .
For the N -photon state |ψN 〉 of (A8), the probability

of detecting them at t1, ~r1, · · · , tN , ~rN is [23]

p ∝ |〈0|A+(t1, ~r1) · · ·A+(tN , ~rN )|ψN 〉|2 . (12)
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Consider the biphoton entangled state with wavefunc-
tion

ψ̃2(~r, ~ρ) ∝
∫

dω ϕ(ω)Gω(~r, ~ρ) , (13)

which gives the probability amplitude of finding the two
photons at positions ~r = (~rt, z) and ~ρ = (~ρt, ρz) (in the
Heisenberg picture there is no time evolution), and where

Gω(~r, ~ρ) ≡ (14)

1
W (z+ρz)

e
−

κ(~r2t +~ρ2t )

2z0W2 e−i[κ(z+ρz)+
κ(~r2t +~ρ2t )

2zR −arctan z+ρz
z0

],

which represents two photons of identical frequency ω
in a Gaussian beam, see Eq. (6). Except for the multi-
plicative term 1/W and the arctan term, Gω is basically
a product of two Gaussian beam single-photon ampli-
tudes. So we can reuse the calculations above for the
single-photon amplitude to find that the temporal am-
plitude at the center of the image plane ~rt = ~ρt = 0 at
the image plane position z = ρz = z′ is given by the
analogous of (11):

〈0|A+(t1, ~r)A
+(t2, ~ρ)|ψ〉 = ϕ̃(t1 + t2 + 2(z + d)/c) eiθ ,

(15)

with θ some irrelevant phase factor. From this, it is clear
that the time of arrival sum t1 + t2 has an uncertainty
∆τ ,the width of ϕ̃. Which means that the average time of
arrival (t1+ t2)/2 is estimated to be the correct value d+
z = 2d with a statistical error ∆τ/2. Instead, from (11)
we saw that, using a single photon state, one estimates
the time of arrival with an uncertainty ∆τ , so the average
time of arrival of two photons will be estimated with an
uncertainty ≃ ∆τ/

√
2. The

√
2 enhancement in precision

is the
√
N gain that one expects from entanglement in

quantum metrology.
The biphoton analysis done here can be straightfor-

wardly extended to the case of N entangled photons in a
Gaussian beam. Namely, a state with wavefunction

ψ(~r1, · · · , ~rN ) ∝
∫

dωϕ(ω)Gω(~r1, · · · , ~rN ) , (16)

whereGω is a trivial generalization of (14). It gives a
√
N

enhancement in the average photon time of arrival, which
translates into a

√
N precision enhancement in the longi-

tudinal localization for each point in the sky scanned by
the N -photon Gaussian beam (16), when one measures
the average arrival time

∑

i ti/N .

IV. CONCLUSIONS

In conclusion we have presented a quantum
radar protocol that uses entanglement in the fre-
quency/wavelength degrees of freedom to provide an

quantum enhancement equal to the square root
√
N

of the number N of entangled photons employed. We
have shown in detail how the optical transfer function
formalism can be employed in the fully quantum regime
we analyze here.

Appendix A: Quantization of the EM field

In this appendix we review the usual theory for the
quantization of the electromagnetic field. This is useful
to set the notation we use in the paper, and also to keep
track of the specific roles that all the radiation degrees
of freedom play in our protocol. Specifically, it is useful
to understand the peculiar role of the frequency degree
of freedom of the radiation that our protocol hinges on.

1. Classical EM in the Coulomb gauge

Start from the Maxwell equations in vacuum in the
Coulomb gauge for the scalar and vector potentials Φ

and ~A: ∇2Φ(t, ~r) = 0, � ~A(t, ~r) = ∂
∂t
~∇Φ, where ~r =

(x, y, z) is the spatial position, and � = ∇2 − 1
c2

∂2

∂t2

is the d’Alamabertian with ~∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ) in Carte-

sian coordinates. Conventionally, since we are interested
only in the quantization of the electromagnetic waves,
one chooses the specific solution Φ = 0, which implies

� ~A(t, ~r) = 0. For simplicity of notation we will consider
scalar fields A(t, ~r) from now on: the vectorial part can be
added by introducing two independent components, con-
nected to the two polarizations of the em field (there are
two polarizations because, in the Coulomb gauge, the po-

tential ~A is transverse: ~∇· ~A = 0). We separate the tem-
poral and spatial degrees of freedom by taking a Fourier
transform over time:

A(t, ~r) =

∫ +∞

−∞

dω e−iωt Uω(~r) , (A1)

where Uω is the component at frequency ω. Since A is
real, we must have U−ω = U∗

ω, this condition can be
enforced automatically if we separate the integral into a
sum of two and change variable in the second:

A(t, ~r) =

∫ ∞

0

dω[e−iωtUω(~r) + e+iωtU∗
ω(~r)] . (A2)

For each component at frequency ω, it is clear from (A1)
that �A = 0 becomes the Helmholtz equation

∇2Uω(~r) =
ω2

c2
Uω(~r). (A3)

A convenient2 solution is in terms of plane waves Uω(~r) =
α(~κ)e±i~κ·~r. The real and imaginary part (or the modulus

2 Because of the linearity of the Helmholtz equation, any solu-
tion Uω(~r) can be expressed as a sum of plane waves Uω(~r) =∫
d3κ α(~κ) ei~κ·~r .
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and phase) of α are the two integration constants, and the
wave direction ~κ/κ parametrizes all the solutions, while
we must choose |~κ| such that ω = ~c ·~κ = ±|~κ|c. The sign
parametrizes two classes of solutions: we must choose +
if the wave vector ~κ is parallel to the wave velocity ~c, or
− if it is antiparallel. The first case refers to the retarded
waves, the second to the advanced waves ([24], sec. 6.4).
We usually choose past boundary conditions, so we only
use retarded waves3. Summarizing, the vacuum solution
of the Maxwell equations is of the form

A(t, ~r) =

∫

R3

d3~κ[α(~k) e−i(ωκt−~κ·~r) + α∗(~k) ei(ωκt−~κ·~r)] ,

(A4)

where α(~κ) is the positive-frequency amplitude4 and
ωκ = |~κ|c, so that the integral over ~κ takes care of the
integral over ω in (A2) (its modulus) and of the integral
over the directions ~κ/κ that enumerate all plane waves.

2. Quantum em: observables

The energy of the electromagnetic field is H =
ǫ0
2

∫

d3~r[E2(t, ~r) + c2B2(t, ~r)], where ~E and ~B are the
electric and magnetic fields. In terms of the amplitudes
α(~κ), one can show that, in the Coulomb gauge, the en-
ergy is

H =
1

2

∫

d3~κ (P 2
~κ + ω2

κX
2
~κ) , (A5)

with P~κ ∝ i(α∗
~κ − α~κ) and X~κ ∝ (α∗

~κ + α~κ). Eq. (A5)
is the energy of a collection of independent (noninteract-
ing) harmonic oscillators (one for each value of ~κ), so we
can quantize by considering X and P as “position” and
“momentum” operators, promoting the amplitudes α to
operators a. Namely, we impose [X~κ, P~κ′ ] = iδ(~κ − ~κ′),
where the delta shows that they are independent oscilla-
tors for each ~κ. From the definitions of X and P , this
implies the commutators

[a(~κ), a†(~κ′)] = δ(~κ− ~κ′) , [a(~κ), a(~κ′)] = 0 . (A6)

3 If we were to choose future boundary conditions, we would need
to consider only advanced waves, and if we were to choose mixed
future-and-past boundary conditions [25], we would have to keep
both solutions, which, incidentally, is a real problem in quantum
field theory, as this leads to a non-Hamiltonian evolution of the
electromagnetic field! Advanced waves can be seen as propa-
gating negative energy in the forward time direction or positive
energy in the negative time direction.

4 Note that the Maxwell equations are solved also by negative fre-
quency plane waves of the type α

−
(~κ) e−i(ωκt+~κ·~r) but, as dis-

cussed above, we will ignore these solutions, by choosing past
boundary conditions as is done usually.

The quantization of the general solution of the Maxwell
equations in the Coulomb gauge �A = 0, is then

A(t, ~r) =

∫

d3~κ [a(~k) e−i(ωκt−~κ·~r) + a†(~k) ei(ωκt−~κ·~r)] ,

(A7)

namely Eq. (A4) quantized. Importantly, since we are
introducing the time evolution in the operators, we are
working in the Heisenberg picture (or in the interaction
picture with the free-field Hamiltonian to evolve the op-
erators). We are working with the vector potential field
A, but the electric field and magnetic fields are trivially

obtained from it: ~E = − ∂
∂t
~A − ~∇Φ, ~B = ~∇× ~A, which

give expressions very similar to (A7), except for the fact
that the derivatives introduce a minus sign between the

two terms of the right-hand-side (as ~A, also ~E and ~B have
two independent components since they are transverse:
~∇ · ~B = 0 and, in vacuum, ~∇ · ~E = 0).
The intensity of the field is proportional to the time

averaged square 〈E2〉t. This is basically equal to the
average photon number in the field. Indeed, from (A4)

and the fact that ~E = − ∂
∂t
~A we have that, classically,

E2 = −ω(α2eiφ + (α∗)2e−iφ − 2|α|2) for a classical field
with only a single ~κ, with Φ = ωt − ~κ · ~r. This almost
matches the quantum result one would get for a coher-
ent state |α〉 for which a|α〉 = α|α〉 (which represents a
classical field). A coherent state has E2 = −ω(α2eiφ +
(α∗)2e−iφ − 2|α|2 − 1), where the -1 term comes from
the commutator [a, a†] = 1 (valid for the quantization of
a field with single ~κ vector). The time average removes
the terms with the phase, leaving only the average pho-
ton number for a coherent state, i.e. 〈α|a†a|α〉 = |α|2.
So while E2 does not coincide with the average photon
number, the time-averaged E2 essentially does for classi-
cal fields. Similar considerations apply also to states with
fixed photon number we consider below, where 〈a2〉 = 0.

3. Quantum em: states

In the classical case, we can choose a specific form of
the α(~κ) to obtain a specific solution of the Maxwell equa-
tions (which can be done by choosing appropriate bound-
ary conditions for the field). In the quantum case, the
α → a(~κ) are operators. There are two ways to assign
a value to them: (i) have them act on eigenstates of the
field (which implies that the field is in a state where there
are no quantum fluctuations of the field). From the form
of Eq. (A7), it is clear that the eigenstates of the field
are quadrature eigenstates for each ~κ, where the quadra-
ture is Qϕ ≡ (a e−iϕ + a†eiϕ)/

√
2. These eigenstates are

unphysical as they are infinitely squeezed states with infi-
nite average energy ~ωκ〈a†(κ)a(κ)〉. (ii) we can calculate
the field expectation value on an arbitrary state |ψ〉 of
the field (which implies that we can calculate the average
field, because there are quantum fluctuations: measuring
the field multiple times, we would get different results).
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How do we choose |ψ〉? It is the state of the em degrees
of freedom. Since these are given by a harmonic oscillator
for each ~κ, the Hilbert space is a Fock space for each ~κ,
so the most general state is given by

|ψ〉 = ∑

nγn|ψn〉, with (A8)

|ψn〉 =
∫

d3~κ1 · · · d3~κn ψn(~κ1, · · · , ~κn)a†(~κ1) · · · a†(~κn)|0〉,

where γn is the probability amplitude to have n photons,
ψn is the joint probability amplitude that they are in
modes ~κ1, · · · , ~κn, and |0〉 is the vacuum. In this paper
we only consider states with a single component γN = 1.
In the Heisenberg picture, the state does not evolve in
time. The wavefunction normalization condition is

∫

d3~κ1 · · · d3~κn |ψn(~κ1, · · · , ~κn)|2 = 1 ∀n . (A9)

More rigorously, the state (A8) refers only to the sit-
uation in which all the photons are in different modes
(namely, the ψn does not contain Dirac δs over the ~κi).
The most general situation is to have the n photons dis-
tributed into m 6 n modes (m = 1 if all the n photons
are in one mode, m = n if there is one photon per mode,
as above). The indistinguishable nature of the photons

implies that only m of the

(

m
n

)

possibilities can be

tracked, namely we can only know that ni photons are in
mode ~κi for i = 1, · · · ,m. In this case, the wavefunction
is ψn(n1, ~κ1, · · · , nm, ~κm)/

√
n1! · · ·nm! with

∑

i ni = n,
where the factorials appear because the ni photon Fock
state in a mode is given by |ni〉 = (a†)ni |0〉/√ni! and
where ψn is the joint probability amplitude that the n
photons are partitioned as {ni} and that their wave vec-
tors are {~κi}.
For single photon states, only the term n = 1 of (A8)

survives. The spatial dependence of the wavefunction can
be obtained by taking the Fourier transform ψ̃ of ψ ≡ ψ1:

∫

d3~κ ψ(~κ) a†(~κ)|0〉 =
∫

d3~r ψ̃(~r) a†(~r)|0〉 , (A10)

where a(~r) ∝
∫

d3~κa(~κ)ei~κ·~r is the annihilator of a photon

at position ~r, so that ψ̃(~r) is the probability that the
photon is in ~r. (Note that, except in the limit discussed
in the next subsection, this is not in general equal to
the probability amplitude of measuring the photon at
position ~r, since there is a difference between the position
of the photon and of its energy, a well known problem
in quantum field theory, e.g. [23, 26, 27]. Indeed, as is
clear from the above analysis, the photon is obtained
from the quantization of the vector potentialA, which is a
gauge-dependent quantity, whereas its energy is, clearly,
a gauge-independent quantity.)
We can choose ψ(~κ) = Nα(~κ), where α(~κ) is the

Fourier transform of the classical solution A(t, ~r) of (A4)

and N is a normalization for Eq. (A9). Indeed, as dis-
cussed below, |A(t, ~r)|2 is the light intensity at position
t, ~r, so it is proportional to the probability of finding the
photon at such position, so A is the probability ampli-
tude, and its Fourier transform α(~κ) is the probability
amplitude in the ~κ space.

4. Quantum em: photodetection

It can be shown that for photodetectors with effi-
ciency η, sufficiently small temporal resolution τ , and
spatial resolution σ, the probability of a photode-
tection at spacetime position (t, ~r) is [23] p(t, ~r) ∝
ητσ〈ψ|[A+(t, ~r)]†A+(t, ~r)|ψ〉. In the case in which the
system state |ψ〉 contains a single photon, we can use
the fact that a is the photon annihilator to simplify
it to p ∝ |〈0|A+|ψ〉|2. To show this, consider |ψ〉 =
∫

d3~κ′ψ(~κ′)a†(~κ′)|0〉, with ψ(~κ′) the probability ampli-
tude that the photon has wave vector ~κ′ (so that its
Fourier transform can be interpreted as the probability
amplitude that the photon is in position ~r). Then

A+|ψ〉 =
∫

d3~κ d3~κ′ψ(~κ′)a(~κ)e−i(ωκt−~κ·~r)a†(~κ′)|0〉 =

ψ̃(~r − ~ct)|0〉 , (A11)

where ~c is the speed of light with the direction ~κ/κ of
the beam. Eq. (A11) follows from the commutator (A6)

and the fact that a|0〉 = 0, and where ψ̃ is the Fourier
transform of ψ. [Note the use of the Heisenberg picture:
the time evolution is only in the operator A+, not in the
state.]
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